|   | 
Details
   web
Records
Author Agarwalla, S.K.; Masud, M.
Title Can Lorentz invariance violation affect the sensitivity of deep underground neutrino experiment? Type Journal Article
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue 8 Pages 716 - 18pp
Keywords
Abstract We examine the impact of Lorentz Invariance Violation (LIV) in measuring the octant of theta(23) and CP phases in the context of the Deep Underground Neutrino Experiment (DUNE). We consider the CPT-violating LIV parameters involving e-mu(a(e mu)) and e-tau (a(e tau)) flavors, which induce an additional interference term in neutrino and antineutrino appearance probabilities. This newinterference term depends on both the standard CP phase delta and the new dynamical CP phase phi(e mu)/phi(e tau), giving rise to new degeneracies among (theta(23), delta, phi). Taking one LIV parameter at-a-time and considering a small value of vertical bar a(e mu)vertical bar = vertical bar a(e tau)vertical bar = 5 x 10(-24) GeV, we find that the octant discovery potential of DUNE gets substantially deteriorated for unfavorable combinations of delta and phi(e mu)/phi(e tau). The octant of theta(23) can only be resolved at 3 sigma if the true value of sin(2) theta(23) less than or similar to 0.42 or >= 0.62 for any choices of delta and phi. Interestingly, we also observe that when both the LIV parameters a(e mu) and a(e tau) are present together, they cancel out the impact of each other to a significant extent, allowing DUNE to largely regain its octant resolution capability. We also reconstruct the CP phases delta and phi(e mu)/phi(e tau). The typical 1 sigma uncertainty on delta is 10-15 degrees. and the same on phi(e mu)/phi(e tau) is 25-30 degrees depending on the choices of their true values.
Address [Agarwalla, Sanjib Kumar; Masud, Mehedi] Inst Phys, Sachivalaya Marg, Bhubaneswar 751005, India, Email: sanjib@iopb.res.in;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes (up) WOS:000557368800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4493
Permanent link to this record
 

 
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title Long-baseline neutrino oscillation physics potential of the DUNE experiment Type Journal Article
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue 10 Pages 978 - 34pp
Keywords
Abstract The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5 sigma, for all delta CP values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3 sigma (5 sigma) after an exposure of 5 (10) years, for 50% of all delta CP values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to sin22 theta 13 to current reactor experiments.
Address [Decowski, M. P.; De Jong, P.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: callum.wilkinson@lhep.unibe.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes (up) WOS:000586405100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4594
Permanent link to this record
 

 
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title Neutrino interaction classification with a convolutional neural network in the DUNE far detector Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 9 Pages 092003 - 20pp
Keywords
Abstract The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2-5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects.
Address [Decowski, M. P.; De Jong, P.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: saul.alonso.monsalve@cern.ch;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes (up) WOS:000587596500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4598
Permanent link to this record
 

 
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform Type Journal Article
Year 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 15 Issue 12 Pages P12004 - 100pp
Keywords Large detector systems for particle and astroparticle physics; Noble liquid detectors (scintillation, ionization, double-phase); Time projection Chambers (TPC)
Abstract The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2 x 6.1 x 7.0 m(3). It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV/c to 7 GeV/c. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP's performance, including noise and gain measurements, dE/dx calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP's successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design.
Address [Decowski, M. P.; De Jong, P.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: cavanna@fnal.gov;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes (up) WOS:000595944800004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4643
Permanent link to this record
 

 
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title Volume III DUNE far detector technical coordination Type Journal Article
Year 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 15 Issue 8 Pages T08009 - 193pp
Keywords
Abstract The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module.
Address [Abi, B.; Azfar, F.; Barr, G.; Kabirnezhad, M.; Reynolds, A.; Rodrigues, P.; Spagliardi, F.; Weber, A.] Univ Oxford, Oxford OX1 3RH, England
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes (up) WOS:000635160500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4786
Permanent link to this record