toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bertone, G.; Cumberbatch, D.; Ruiz de Austri, R.; Trotta, R. url  doi
openurl 
  Title Dark Matter searches: the nightmare scenario Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 01 Issue 1 Pages 004 - 24pp  
  Keywords dark matter theory; dark matter experiments; neutrino detectors; solar and atmospheric neutrinos  
  Abstract The unfortunate case where the Large Hadron Collider (LHC) fails to discover physics Beyond the Standard Model (BSM) is sometimes referred to as the “Nightmare scenario” of particle physics. We study the consequences of this hypothetical scenario for Dark Matter (DM), in the framework of the constrained Minimal Supersymmetric Standard Model (cMSSM). We evaluate the surviving regions of the cMSSM parameter space after null searches at the LHC, using several different LHC configurations, and study the consequences for DM searches with ton-scale direct detectors and the IceCube neutrino telescope. We demonstrate that ton-scale direct detection experiments will be able to conclusively probe the cMSSM parameter space that would survive null searches at the LHC with 100 fb(-1) of integrated luminosity at 14TeV. We also demonstrate that IceCube (80 strings plus DeepCore) will be able to probe as much as similar or equal to 17% of the currently favoured parameter space after 5 years of observation.  
  Address [Bertone, Gianfranco] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland, Email: bertone@iap.fr  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:000300403300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 937  
Permanent link to this record
 

 
Author Agarwalla, S.K.; Conrad, J.M.; Shaevitz, M.H. url  doi
openurl 
  Title Short-baseline neutrino oscillation waves in ultra-large liquid scintillator detectors Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 085 - 24pp  
  Keywords Neutrino Detectors and Telescopes  
  Abstract Powerful new multi-kiloton liquid scintillator neutrino detectors, including NOvA and, possibly, LENA, will come on-line within the next decade. When coupled with a modest-power decay-at-rest (DAR) neutrino source at short-baseline, these detectors can decisively address signals for neutrino oscillations at high Delta m(2). Along the greater than 50 m length of the detector, the characteristic oscillation wave will be apparent, providing powerful verification of the oscillation phenomenon. LENA can simultaneously perform (v) over bar (mu) -> (v) over bar (e) appearance and v(e) -> v(e) disappearance searches while NOvA is likely limited to v(e) disappearance. For the appearance channel, a LENA-like detector could test the LSND and MiniBooNE signal regions at > 5 sigma with a fiducial volume of 5 kt and a 10 kW neutrino source. The LENA and NOvA v(e) disappearance sensitivities are complementary to the recent reactor anomaly indicating possible (v) over bar (e) disappearance and would cover this possible oscillation signal at similar to 3 sigma.  
  Address [Agarwalla, Sanjib Kumar] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: Sanjib.Agarwalla@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:000298847400030 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 884  
Permanent link to this record
 

 
Author Agarwalla, S.K.; Blennow, M.; Fernandez-Martinez, E.; Mena, O. url  doi
openurl 
  Title Neutrino probes of the nature of light dark matter Type Journal Article
  Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 09 Issue 9 Pages 004 - 19pp  
  Keywords dark matter experiments; neutrino detectors  
  Abstract Dark matter particles gravitationally trapped inside the Sun may annihilate into Standard Model particles, producing a flux of neutrinos. The prospects of detecting these neutrinos in future multi-kt neutrino detectors designed for other physics searches are explored here. We study the capabilities of a 34/100 kt liquid argon detector and a 100 kt magnetized iron calorimeter detector. These detectors are expected to determine the energy and the direction of the incoming neutrino with unprecedented precision allowing for tests of the dark matter nature at very low dark matter masses, in the range of 10-25 GeV. By suppressing the atmospheric background with angular cuts, these techniques would be sensitive to dark matter-nucleon spin-dependent cross sections at the fb level, reaching down to a few ab for the most favorable annihilation channels and detector technology.  
  Address [Agarwalla, Sanjib Kumar; Mena, Olga] Univ Politecn Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: Sanjib.Agarwalla@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:000296767000004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 858  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva