toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author D'Auria, G. et al; Gonzalez-Iglesias, D.; Gimeno, B.; Pereira, D.E. doi  openurl
  Title The CompactLight Design Study Type Journal Article
  Year 2024 Publication European Physical Journal-Special Topics Abbreviated Journal Eur. Phys. J.-Spec. Top.  
  Volume Issue Pages 1-208  
  Keywords  
  Abstract CompactLight is a Design Study funded by the European Union under the Horizon 2020 research and innovation funding programme, with Grant Agreement No. 777431. CompactLight was conducted by an International Collaboration of 23 international laboratories and academic institutions, three private companies, and five third parties. The project, which started in January 2018 with a duration of 48 months, aimed to design an innovative, compact, and cost-effective hard X-ray FEL facility complemented by a soft X-ray source to pave the road for future compact accelerator-based facilities. The result is an accelerator that can be operated at up to 1 kHz pulse repetition rate, beyond today's state of the art, using the latest concepts for high brightness electron photoinjectors, very high gradient accelerating structures in X-band, and novel short-period undulators. In this report, we summarize the main deliverable of the project: the CompactLight Conceptual Design Report, which overviews the current status of the design and addresses the main technological challenges.  
  Address [D'Auria, G.; Danailov, M.; Mitri, S. Di; Ferianis, M.; Gioppo, R.; Rochow, R.; Tabacco, C.; Zangrando, M.] Elettra Sincrotrone Trieste SCpA, AREA Sci Pk, I-34149 Trieste, Italy, Email: gerardo.dauria@elettra.eu  
  Corporate Author Thesis  
  Publisher Springer Heidelberg Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1951-6355 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001198683900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6122  
Permanent link to this record
 

 
Author Torres-Sanchez, P.; Steiger, H.T.J.; Mastinu, P.; Wyss, J.L.; Kayser, L.; Silvestrin, L.; Musacchio-Gonzalez, E.; Stock, M.R.; Dörflinger, D.; Fahrendholz, U.; Prete, G.; Carletto, O.; Oberauer, L.; Porras, I. url  doi
openurl 
  Title Fast neutron production at the LNL Tandem from the 7Li(14N,xn)X reaction Type Journal Article
  Year 2024 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 84 Issue 4 Pages 372 - 11pp  
  Keywords  
  Abstract Fast neutron beams (E-n>1 MeV) are of relevance for many scientific and industrial applications. This paper explores fast neutron production using a TANDEM accelerator at the Legnaro National Laboratories, via an energetic ion beam (90 MeV N-14) onto a lithium target. The high energy models for nuclear collision of FLUKA foresee large neutron yields for reactions of this kind. The experiment aimed at validating the expected neutron yields from FLUKA simulations, using two separate and independent set-ups: one based on the multi-foil activation technique, and the other on the time of flight technique, by using liquid scintillator detectors. The results of the experiment show clear agreement of the measured spectra with the FLUKA simulations, both in the shape and the magnitude of the neutron flux at the mea-sured positions. The neutron spectrum is centered around the 8 MeV range with mild tails, and a maximum neutron energy spanning up to 50 MeV. These advantageous results provide a starting point in the development of fast neutron beams based on high energy ion beams from medium-sized accelerator facilities  
  Address [Torres-Sanchez, Pablo] Univ Valencia, Inst Fis Corpuscular, CSIC, Valencia, Spain, Email: pablotorres@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001198645600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6107  
Permanent link to this record
 

 
Author Coppola, M.; Gomez Dumm, D.; Noguera, S.; Scoccola, N.N. url  doi
openurl 
  Title Masses of magnetized pseudoscalar and vector mesons in an extended NJL model: The role of axial vector mesons Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 5 Pages 054014 - 30pp  
  Keywords  
  Abstract We study the mass spectrum of light pseudoscalar and vector mesons in the presence of an external uniform magnetic field B., considering the effects of the mixing with the axial-vector meson sector. The analysis is performed within a two-flavor NJL-like model which includes isoscalar and isovector couplings together with a flavor mixing 't Hooft-like term. The effect of the magnetic field on charged particles is taken into account by retaining the Schwinger phases carried by quark propagators, and expanding the corresponding meson fields in proper Ritus-like bases. The spin-isospin and spin-flavor decomposition of meson mass states is also analyzed. For neutral pion masses it is shown that the mixing with axial vector mesons improves previous theoretical results, leading to a monotonic decreasing behavior with B that is in good qualitative agreement with lattice QCD (LQCD) calculations, both for the case of constant or B-dependent couplings. Regarding charged pions, it is seen that the mixing softens the enhancement of their mass with B. As a consequence, the energy becomes lower than the one corresponding to a pointlike pion, improving the agreement with LQCD results. The agreement is also improved for the magnetic behavior of the lowest.thorn energy state, which does not vanish for the considered range of values of B-a fact that can be relevant in connection with the occurrence of meson condensation for strong magnetic fields.  
  Address [Coppola, M.; Scoccola, N. N.] Comis Nacl Energia Atom, Dept Fis, Ave Libertador 8250, RA-1429 Buenos Aires, Argentina  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001196327000010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6119  
Permanent link to this record
 

 
Author Santos, A.C.L.; Muniz, C.R.; Maluf, R.V. url  doi
openurl 
  Title Yang-Mills Casimir wormholes in D=2+1 Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 09 Issue 9 Pages 022 - 24pp  
  Keywords Wormholes; Exact solutions; black holes and black hole thermodynamics in GR and beyond; gravity  
  Abstract This work presents new three-dimensional traversable wormhole solutions sourced by the Casimir density and pressures related to the quantum vacuum fluctuations in Yang-Mills (Y-M) theory. We begin by analyzing the noninteracting Y-M Casimir wormholes, initially considering an arbitrary state parameter omega and determine a simple constant wormhole shape function. Next, we introduce a new methodology for deforming the state parameter to find well-behaved redshift functions. The wormhole can be interpreted as a legitimate Casimir wormhole with an expected average state parameter of omega = 2. Then, we investigate the wormhole curvature properties, energy conditions, and stability. Furthermore, we discover a novel family of traversable wormhole solutions sourced by the quantum vacuum fluctuations of interacting Yang-Mills fields with a more complex shape function. Deforming the effective state parameter similarly, we obtain well-behaved redshift functions and traversable wormhole solutions. Finally, we examine the energy conditions and stability of solutions in the interacting scenario and compare to the noninteracting case.  
  Address [Santos, Alana C. L.; Maluf, Roberto V.] Univ Fed Ceara UFC, Departamento Fis, Campus Pici,6030, BR-60455760 Fortaleza, Ceara, Brazil, Email: alanasantos@fisica.ufc.br;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001196198800004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6031  
Permanent link to this record
 

 
Author De Romeri, V.; Martin Lozano, V.; Sanchez Garcia, G. url  doi
openurl 
  Title Neutrino window to scalar leptoquarks: From low energy to colliders Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 5 Pages 055014 - 21pp  
  Keywords  
  Abstract Leptoquarks are theorized particles of either scalar or vector nature that couple simultaneously to quarks and leptons. Motivated by recent measurements of coherent elastic neutrino -nucleus scattering, we consider the impact of scalar leptoquarks coupling to neutrinos on a few complementary processes, from low energy to colliders. In particular, we set competitive constraints on the typical mass and coupling of scalar leptoquarks by analyzing recent COHERENT data. We compare these constraints with bounds from atomic parity violation experiments, deep inelastic neutrino -nucleon scattering and collider data. Our results highlight a strong complementarity between different facilities and demonstrate the power of coherent elastic neutrino -nucleus scattering experiments to probe leptoquark masses in the sub-TeV range. Finally, we also present prospects for improving current bounds with future upgrades of the COHERENT detectors and the planned European Spallation Source.  
  Address [De Romeri, Valentina; Lozano, Victor Martin; Garcia, G. Sanchez] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient UV C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: deromeri@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001195802100003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 6039  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva