|   | 
Details
   web
Records
Author Agullo, I.; Bonga, B.; Ribes-Metidieri, P.; Kranas, D.; Nadal-Gisbert, S.
Title How ubiquitous is entanglement in quantum field theory? Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue 8 Pages 085005 - 25pp
Keywords
Abstract It is well known that entanglement is widespread in quantum field theory, in the following sense: every Reeh-Schlieder state contains entanglement between any two spatially separated regions. This applies, in particular, to the vacuum of a noninteracting scalar theory in Minkowski spacetime. Discussions on entanglement in field theory have focused mainly on subsystems containing infinitely many degrees of freedom-typically, the field modes that are supported within a compact region of space. In this article, we study entanglement in subsystems made of finitely many field degrees of freedom, in a free scalar theory in D + 1-dimensional Minkowski spacetime. The focus on finitely many modes of the field is motivated by the finite capabilities of real experiments. We find that entanglement between finite-dimensional subsystems is not common at all, and that one needs to carefully select the support of modes for entanglement to show up. We also find that entanglement is increasingly sparser in higher dimensions. We conclude that entanglement in Minkowski spacetime is significantly less ubiquitous than normally thought.
Address [Agullo, Ivan; Ribes-Metidieri, Patricia; Kranas, Dimitrios; Nadal-Gisbert, Sergi] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA, Email: agullo@lsu.edu;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes (down) WOS:001157784100011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5936
Permanent link to this record
 

 
Author Di Valentino, E.; Gariazzo, S.; Giare, W.; Mena, O.
Title Impact of the damping tail on neutrino mass constraints Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue 8 Pages 083509 - 11pp
Keywords
Abstract Model-independent mass limits assess the robustness of current cosmological measurements of the neutrino mass scale. Consistency between high-multipole and low-multiple cosmic microwave background observations measuring such scale further valuates the constraining power of present data. We derive here up-to-date limits on neutrino masses and abundances exploiting either the Data Release 4 of the Atacama Cosmology Telescope (ACT) or the South Pole Telescope polarization measurements from SPT-3G, envisaging different nonminimal background cosmologies and marginalizing over them. By combining these high-l observations with supernova Ia, baryon acoustic oscillations (BAO), redshift space distortions (RSD) and a prior on the reionization optical depth fromWMAP data, we find that the marginalized bounds are competitive with those from Planck analyses. We obtain Sigma m(nu) < 0.139 eV and N-eff = 2.82 +/- 0.25 in a dark energy quintessence scenario, both at 95% CL. These limits translate into Sigma m(nu) < 0.20 eV and N-eff = 2.79(-0.28)(+0.30) after marginalizing over a plethora of well-motivated fiducial models. Our findings reassess both the strength and the reliability of cosmological neutrino mass constraints.
Address [Di Valentino, Eleonora; Giare, William] Univ Sheffield, Sch Math & Stat, Hounsfield Rd, Sheffield S3 7RH, S Yorkshire, England, Email: e.divalentino@sheffield.ac.uk;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes (down) WOS:001157784100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5935
Permanent link to this record
 

 
Author Hajjar, R.; Mena, O.; Palomares-Ruiz, S.
Title Earth tomography with supernova neutrinos at future neutrino detectors Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue 8 Pages 083011 - 24pp
Keywords
Abstract Earth neutrino tomography is a realistic possibility with current and future neutrino detectors, complementary to geophysics methods. The two main approaches are based on either partial absorption of the neutrino flux as it propagates through Earth (at energies about a few TeV) or on coherent Earth matter effects affecting the neutrino oscillations pattern (at energies below a few tens of GeV). In this work, we consider the latter approach, focusing on supernova neutrinos with tens of MeV. Whereas at GeVenergies, Earth matter effects are driven by the atmospheric mass-squared difference, at energies below similar to 100 MeV, it is the solar mass-squared difference that controls them. Unlike solar neutrinos, which suffer from significant weakening of the contribution to the oscillatory effect from remote structures due to the neutrino energy reconstruction capabilities of detectors, supernova neutrinos can have higher energies and, thus, can better probe Earth's interior. We shall revisit this possibility, using the most recent neutrino oscillation parameters and up-to-date supernova neutrino spectra. The capabilities of future neutrino detectors, such as DUNE, Hyper-Kamiokande, and JUNO, are presented, including the impact of the energy resolution and other factors. Assuming a supernova burst at 10 kpc, we show that the average Earth's core density could be determined within less than or similar to 10% at 1 sigma confidence level, Hyper-Kamiokande being, with its largest mass, the most promising detector to achieve this goal.
Address [Hajjar, Rasmi; Mena, Olga; Palomares-Ruiz, Sergio] Univ Valencia CSIC, Inst Fis Corpusc IFIC, Parc Cient UV,C Catedratico Jose Beltran 2, E-46980 Paterna, Spain, Email: rasmi.hajjar@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes (down) WOS:001157784100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5940
Permanent link to this record
 

 
Author Servant, G.; Simakachorn, P.
Title Constraining postinflationary axions with pulsar timing arrays Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue 12 Pages 123516 - 16pp
Keywords
Abstract Models that produce axionlike particles (ALPs) after cosmological inflation due to spontaneous U(1) symmetry breaking also produce cosmic-string networks. Those axionic strings lose energy through gravitational-wave emission during the whole cosmological history, generating a stochastic background of gravitational waves that spans many decades in frequency. We can therefore constrain the axion decay constant and axion mass from limits on the gravitational-wave spectrum and compatibility with dark matter abundance as well as dark radiation. We derive such limits from analyzing the most recent NANOGrav data from pulsar timing arrays (PTAs). The limits are similar to the Neff bounds on dark radiation for ALP masses ma less than or similar to 10-22 eV. On the other hand, for heavy ALPs with ma greater than or similar to 0.1 GeV and NDW not equal 1, new regions of parameter space can be probed by PTA data due to the dominant domain-wall contribution to the gravitational-wave background.
Address [Servant, Geraldine] DESY, Notkestr 85, D-22607 Hamburg, Germany, Email: geraldine.servant@desy.de;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes (down) WOS:001155748800012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5933
Permanent link to this record
 

 
Author Choi, K.Y.; Gong, J.O.; Joh, J.; Park, W.I.; Seto, O.
Title Light cold dark matter from non-thermal decay Type Journal Article
Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 845 Issue Pages 138126 - 8pp
Keywords Dark matter; Non-thermal production; Axion; Q-ball; Dark matter; Non-thermal production; Axion; Q-ball; Dark matter; Non-thermal production; Axion; Q-ball
Abstract We investigate the mass range and the corresponding free-streaming length scale of dark matter produced non-thermally from decay of heavy objects which can be either dominant or sub-dominant at the moment of decay. We show that the resulting dark matter could be very light well below keV scale with a free-streaming length satisfying the Lyman-alpha constraints. We demonstrate two explicit examples for such light cold dark matter.
Address [Choi, Ki-Young; Joh, Junghoon] Sungkyunkwan Univ, Dept Phys, Dept Phys, Suwon 16419, South Korea, Email: kiyoungchoi@skku.edu;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes (down) WOS:001155183100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5942
Permanent link to this record