toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Husek, T.; Goudzovski, E.; Icampf, K. url  doi
openurl 
  Title Precise Determination of the Branching Ratio of the Neutral-Pion Dalitz Decay Type Journal Article
  Year 2019 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 122 Issue 2 Pages 022003 - 6pp  
  Keywords  
  Abstract We provide a new value for the ratio R = Gamma(pi(0) -> e(+)e(-)gamma(gamma))/Gamma(pi(0) -> gamma gamma) = 11.978(6) x 10(-3), which is by 2 orders of magnitude more precise than the current Particle Data Group average. It is obtained using the complete set of the next-to-leading-order radiative corrections in the QED sector, and incorporates up-to-date values of the pi(0)-transition-form-factor slope. The ratio R translates into the branching ratios of the two main pi(0) decay modes: B(pi(0) -> gamma gamma) = 98.8131(6)% and B(pi(0) -> e(+)e(-)gamma(gamma)) = 1.1836(6)%.  
  Address [Husek, Tomas] Univ Valencia, IFIC, CSIC, Apt Correus 22085, E-46071 Valencia, Spain, Email: thusek@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes (up) WOS:000456041800006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3886  
Permanent link to this record
 

 
Author ANTARES, IceCube, LIGO and Virgo Collaborations (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Colomer, M.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Lotze, M.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube Type Journal Article
  Year 2019 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 870 Issue 2 Pages 134 - 16pp  
  Keywords gravitational waves; neutrinos  
  Abstract Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the outflow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the ANTARES and IceCube neutrino observatories from the same time period. We focused on candidate events whose astrophysical origins could not be determined from a single messenger. We found no significant coincident candidate, which we used to constrain the rate density of astrophysical sources dependent on their gravitational-wave and neutrino emission processes.  
  Address [Albert, A.; Drouhin, D.; Ruiz, R. Gracia; Organokov, M.; Pradier, T.; Maris, I. C.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes (up) WOS:000456063900015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3883  
Permanent link to this record
 

 
Author Lopez-Honorez, L.; Mena, O.; Villanueva-Domingo, P. url  doi
openurl 
  Title Dark matter microphysics and 21 cm observations Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 2 Pages 023522 - 12pp  
  Keywords  
  Abstract Dark matter interactions with massless or very light standard model particles, as photons or neutrinos, may lead to a suppression of the matter power spectrum at small scales and of the number of low mass haloes. Bounds on the dark matter scattering cross section with light degrees of freedom in such interacting dark matter (IDM) scenarios have been obtained from e.g., early time cosmic microwave background physics and large scale structure observations. Here we scrutinize dark matter microphysics in light of the claimed 21 cm EDGES 78 MHz absorption signal. IDM is expected to delay the 21 cm absorption features due to collisional damping effects. We identify the astrophysical conditions under which the existing constraints on the dark matter scattering cross section could be largely improved due to the IDM imprint on the 21 cm signal, providing also an explicit comparison to the WDM scenario.  
  Address [Lopez-Honorez, Laura] Univ Libre Bruxelles, Serv Phys Theor, CP225,Blvd Triomphe, B-1050 Brussels, Belgium, Email: llopezho@ulb.ac.be;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes (up) WOS:000456291400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3885  
Permanent link to this record
 

 
Author Masud, M.; Bishai, M.; Mehta, P. url  doi
openurl 
  Title Extricating New Physics Scenarios at DUNE with Higher Energy Beams Type Journal Article
  Year 2019 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 9 Issue Pages 352 - 9pp  
  Keywords  
  Abstract The proposed Deep Underground Neutrino Experiment (DUNE) utilizes a wide-band on-axis tunable muon-(anti) neutrino beam with a baseline of 1300 km to search for CP violation with high precision. Given the long baseline, DUNE is also sensitive to effects due to matter induced non-standard neutrino interactions (NSI) which can interfere with the standard three-flavor oscillation paradigm. Hence it is desirable to design strategies to disentangle effects due to NSI from standard oscillations. In this article, we exploit the tunability of the DUNE neutrino beam over a wide-range of energies to devise an experimental strategy for separating oscillation effects due to NSI from the standard three-flavor oscillation scenario. Using chi(2) analysis, we obtain an optimal combination of beam tunes and distribution of run times in neutrino and anti-neutrino modes that would enable DUNE to isolate new physics scenarios from the standard. We can distinguish scenarios at 3 sigma (5 sigma) level for almost all (similar to 50%) values of delta. To the best of our knowledge, our strategy is entirely new and has not been reported elsewhere.  
  Address [Masud, Mehedi] Univ Valencia, CSIC, Inst Fis Corpuscular, Astroparticle & High Energy Phys Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2E, E-46980 Valencia, Spain, Email: masud@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes (up) WOS:000456392400033 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3891  
Permanent link to this record
 

 
Author Xie, J.J.; Liang, W.H.; Oset, E. url  doi
openurl 
  Title eta-He-4 interaction from the dd->eta He-4 reaction near threshold Type Journal Article
  Year 2019 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 55 Issue 1 Pages 6 - 8pp  
  Keywords  
  Abstract .We analyze the data on the total cross sections for the dd4 He reaction close to threshold and look for possible 4 He bound states. We develop a framework in which the 4 He optical potential is the key ingredient, rather than parameterizing the scattering matrix, as is usually done. The strength of this potential, together with some production parameters, are fitted to the available experimental data. The relationship of the scattering matrix to the optical potential is established using the Bethe-Salpeter equation and the 4 He loop function incorporates the range of the interaction given by the experimental He-4 density. However, when we look for poles of the scattering matrix, we get poles in the bound region, poles in the positive energy region or no poles at all. If we further restrict the results with constraints from a theoretical model with all its uncertainties the bound states are not allowed. However, we find a bump structure in |T|2 of the 4 He 4 He scattering amplitude below threshold for the remaining solutions.  
  Address [Xie, Ju-Jun] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Gansu, Peoples R China, Email: xiejujun@impcas.ac.cn;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes (up) WOS:000456478000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3887  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva