toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 7 Pages 072006 - 32pp  
  Keywords  
  Abstract The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-calendar years (kt-MW-CY), where calendar years include an assumption of 57% accelerator uptime based on past accelerator performance at Fermilab. The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 4 sigma (5 sigma) level with a 66 (100) kt-MW-CY far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters, with a median sensitivity of 3 sigma for almost all true delta(CP) values after only 24 kt-MW-CY. We also show that DUNE has the potential to make a robust measurement of CPV at a 3 sigma level with a 100 kt-MW-CY exposure for the maximally CP-violating values delta(CP) = +/-pi/2. Additionally, the dependence of DUNE's sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest.  
  Address [Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: cwilkinson@lbl.gov  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:000809663000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5260  
Permanent link to this record
 

 
Author Mandal, S.; Miranda, O.G.; Sanchez Garcia, G.; Valle, J.W.F.; Xu, X.J. url  doi
openurl 
  Title Toward deconstructing the simplest seesaw mechanism Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 9 Pages 095020 - 32pp  
  Keywords  
  Abstract The triplet or type-II seesaw mechanism is the simplest way to endow neutrinos with mass in the Standard Model (SM). Here we review its associated theory and phenomenology, including restrictions from S, T, U parameters, neutrino experiments, charged lepton flavor violation as well as collider searches. We also examine restrictions coming from requiring consistency of electroweak symmetry breaking, i.e., perturbative unitarity and stability of the vacuum. Finally, we discuss novel effects associated to the scalar mediator of neutrino mass generation namely, (i) rare processes, e.g., l(alpha)-> l(beta)gamma decays, at the intensity frontier, and also (ii) four-lepton signatures in colliders at the high-energy frontier. These can be used to probe neutrino properties in an important way, providing a test of the absolute neutrino mass and mass ordering, as well as of the atmospheric octant. They may also provide the first evidence for charged lepton flavor violation in nature. In contrast, neutrino nonstandard interaction strengths are found to lie below current detectability.  
  Address [Mandal, Sanjoy] Korea Inst Adv Study, Seoul 02455, South Korea, Email: smandal@kias.re.kr;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:000807778600004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5249  
Permanent link to this record
 

 
Author de Anda, F.J.; Medina, O.; Valle, J.W.F.; Vaquera-Araujo, C.A. url  doi
openurl 
  Title Scotogenic Majorana neutrino masses in a predictive orbifold theory of flavor Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 5 Pages 055030 - 12pp  
  Keywords  
  Abstract The use of extra space-time dimensions provides a promising approach to the flavor problem. The chosen compactification of a 6-dimensional orbifold implies a remnant family symmetry A4. This makes interesting predictions for quark and lepton masses, for neutrino oscillations and neutrinoless double beta decay, providing also a very good global description of all flavor observables. Due to an auxiliary Z4 symmetry, we implement a scotogenic Majorana neutrino mass generation mechanism with a viable WIMP dark matter candidate.  
  Address [de Anda, Francisco J.] Tepatitlans Inst Theoret Studies, Tepatitlan De Morelos, Jalisco, Mexico, Email: fran@tepaits.mx;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:000783936600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5202  
Permanent link to this record
 

 
Author Carcamo Hernandez, A.E.; Hati, C.; Kovalenko, S.; Valle, J.W.F.; Vaquera-Araujo, C.A. url  doi
openurl 
  Title Scotogenic neutrino masses with gauged matter parity and gauge coupling unification Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 034 - 25pp  
  Keywords Beyond Standard Model; Gauge Symmetry; Neutrino Physics  
  Abstract Building up on previous work we propose a Dark Matter (DM) model with gauged matter parity and dynamical gauge coupling unification, driven by the same physics responsible for scotogenic neutrino mass generation. Our construction is based on the extended gauge group SU(3)(c) circle times SU(3)(L) circle times U(1)(X) circle times U(1)(N), whose spontaneous breaking leaves a residual conserved matter parity, M-P, stabilizing the DM particle candidates of the model. The key role is played by Majorana SU(3) (L)-octet leptons, allowing the successful gauge coupling unification and a one-loop scotogenic neutrino mass generation. Theoretical consistency allows for a plethora of new particles at the less than or similar to O(10) TeV scale, hence accessible to future collider and low-energy experiments.  
  Address [Carcamo Hernandez, A. E.] Univ Tecn Federico Santa Maria, Casilla 110-5, Valparaiso, Chile, Email: antonio.carcamo@usm.cl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:000766168700014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5162  
Permanent link to this record
 

 
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Molina Bueno, L.; Novella, P.; Rubio, F.C.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Searching for solar KDAR with DUNE Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 10 Issue 10 Pages 065 - 28pp  
  Keywords dark matter theory; neutrino detectors  
  Abstract The observation of 236 MeV muon neutrinos from kaon-decay-at-rest (KDAR) originating in the core of the Sun would provide a unique signature of dark matter annihilation. Since excellent angle and energy reconstruction are necessary to detect this monoenergetic, directional neutrino flux, DUNE with its vast volume and reconstruction capabilities, is a promising candidate for a KDAR neutrino search. In this work, we evaluate the proposed KDAR neutrino search strategies by realistically modeling both neutrino-nucleus interactions and the response of DUNE. We find that, although reconstruction of the neutrino energy and direction is difficult with current techniques in the relevant energy range, the superb energy resolution, angular resolution, and particle identification offered by DUNE can still permit great signal/background discrimination. Moreover, there are non-standard scenarios in which searches at DUNE for KDAR in the Sun can probe dark matter interactions.  
  Address [Fani, M.; Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:000758221400019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5141  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva