toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author de Salas, P.F.; Lineros, R.A.; Tortola, M. url  doi
openurl 
  Title Neutrino propagation in the Galactic dark matter halo Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 94 Issue 12 Pages 123001 - 14pp  
  Keywords  
  Abstract Neutrino oscillations are a widely observed and well-established phenomenon. It is also well known that deviations with respect to flavor conversion probabilities in vacuum arise due to neutrino interactions with matter. In this work, we analyze the impact of new interactions between neutrinos and the dark matter present in the Milky Way on the neutrino oscillation pattern. The dark matter-neutrino interaction is modeled by using an effective coupling proportional to the Fermi constant GF with no further restrictions on its flavor structure. For the galactic dark matter profile we consider a homogeneous distribution as well as several density profiles, estimating in all cases the size of the interaction required to get an observable effect at different neutrino energies. Our discussion is mainly focused in the PeV neutrino energy range, to be explored in observatories like IceCube and KM3NeT. The obtained results may be interpreted in terms of a light O(sub-eV-keV) or weakly interacting massive particlelike dark matter particle or as a new interaction with a mediator of O(sub-eV-keV) mass.  
  Address [de Salas, P. F.; Lineros, R. A.; Tortola, M.] Univ Valencia, Inst Fis Corpuscular CSIC, Parc Cient,Calle Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: pabferde@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes (up) WOS:000389028000001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2873  
Permanent link to this record
 

 
Author Ge, S.F.; Pasquini, P.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Measuring the leptonic CP phase in neutrino oscillations with nonunitary mixing Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 95 Issue 3 Pages 033005 - 14pp  
  Keywords  
  Abstract Non-unitary neutrino mixing implies an extra CP violating phase that can fake the leptonic Dirac CP phase delta(CP) of the simplest three-neutrino mixing benchmark scheme. This would hinder the possibility of probing for CP violation in accelerator-type experiments. We take T2K and T2HK as examples to demonstrate the degeneracy between the “standard” (or “unitary”) and “nonunitary” CP phases. We find, under the assumption of nonunitary mixing, that their CP sensitivities severely deteriorate. Fortunately, the TNT2K proposal of supplementing T2(H)K with a μDAR source for better measurement of delta(CP) can partially break the CP degeneracy by probing both cos delta(CP) and sin delta(CP) dependences in the wide spectrum of the μDAR flux. We also show that the further addition of a near detector to the μDAR setup can eliminate the degeneracy completely.  
  Address [Ge, Shao-Feng] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany, Email: gesf02@gmail.com;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes (up) WOS:000394092900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2988  
Permanent link to this record
 

 
Author Escrihuela, F.J.; Forero, D.V.; Miranda, O.G.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Probing CP violation with non-unitary mixing in long-baseline neutrino oscillation experiments: DUNE as a case study Type Journal Article
  Year 2017 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 19 Issue Pages 093005 - 14pp  
  Keywords neutrino masses and mixings; neutrino oscillations; neutrino interactions  
  Abstract When neutrino masses arise from the exchange of neutral heavy leptons, as in most seesaw schemes, the effective lepton mixing matrix N describing neutrino propagation is non-unitary, hence neutrinos are not exactly orthonormal. New CP violation phases appear in N that could be confused with the standard phase delta(CP) characterizing the three neutrino paradigm. We study the potential of the long-baseline neutrino experiment DUNE in probing CP violation induced by the standard CP phase in the presence of non-unitarity. In order to accomplish this we develop our previous formalism, so as to take into account the neutrino interactions with the medium, important in long baseline experiments such as DUNE. We find that the expected CP sensitivity of DUNE is somewhat degraded with respect to that characterizing the standard unitary case. However the effect is weaker than might have been expected thanks mainly to the wide neutrino beam. We also investigate the sensitivity of DUNE to the parameters characterizing non-unitarity. In this case we find that there is no improvement expected with respect to the current situation, unless the near detector setup is revamped.  
  Address [Escrihuela, F. J.; Tortola, M.; Valle, J. W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: franesfe@alumni.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes (up) WOS:000410457100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3292  
Permanent link to this record
 

 
Author Kosmas, T.S.; Papoulias, D.K.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Probing light sterile neutrino signatures at reactor and Spallation Neutron Source neutrino experiments Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 96 Issue 6 Pages 063013 - 12pp  
  Keywords  
  Abstract We investigate the impact of a fourth sterile neutrino at reactor and Spallation Neutron Source neutrino detectors. Specifically, we explore the discovery potential of the TEXONO and COHERENT experiments to subleading sterile neutrino effects through the measurement of the coherent elastic neutrino-nucleus scattering event rate. Our dedicated chi(2)-sensitivity analysis employs realistic nuclear structure calculations adequate for high purity sub-keV threshold Germanium detectors.  
  Address [Kosmas, T. S.; Papoulias, D. K.] Univ Ioannina, Theoret Phys Sect, GR-45110 Ioannina, Greece, Email: hkosmas@uoi.gr;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes (up) WOS:000411582400002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3304  
Permanent link to this record
 

 
Author Farzan, Y.; Tortola, M. url  doi
openurl 
  Title Neutrino oscillations and non-standard Interactions Type Journal Article
  Year 2018 Publication Frontiers in Physics Abbreviated Journal Front. Physics  
  Volume 6 Issue Pages 10 - 34pp  
  Keywords neutrino oscillations; leptonic CP violation; non-standard neutrino interactions; neutrino masses; neutrino physics  
  Abstract Current neutrino experiments are measuring the neutrino mixing parameters with an unprecedented accuracy. The upcoming generation of neutrino experiments will be sensitive to subdominant neutrino oscillation effects that can in principle give information on the yet-unknown neutrino parameters: the Dirac CP-violating phase in the PMNS mixing matrix, the neutrino mass ordering and the octant of.23. Determining the exact values of neutrino mass and mixing parameters is crucial to test various neutrino models and flavor symmetries that are designed to predict these neutrino parameters. In the first part of this review, we summarize the current status of the neutrino oscillation parameter determination. We consider the most recent data from all solar neutrino experiments and the atmospheric neutrino data from Super-Kamiokande, IceCube, and ANTARES. We also implement the data from the reactor neutrino experiments KamLAND, Daya Bay, RENO, and Double Chooz as well as the long baseline neutrino data from MINOS, T2K, and NO.A. If in addition to the standard interactions, neutrinos have subdominant yet-unknown Non-Standard Interactions (NSI) with matter fields, extracting the values of these parameters will suffer from new degeneracies and ambiguities. We review such effects and formulate the conditions on the NSI parameters under which the precision measurement of neutrino oscillation parameters can be distorted. Like standard weak interactions, the non-standard interaction can be categorized into two groups: Charged Current (CC) NSI and Neutral Current (NC) NSI. Our focus will bemainly on neutral current NSI because it is possible to build a class of models that give rise to sizeable NC NSI with discernible effects on neutrino oscillation. These models are based on new U(1) gauge symmetry with a gauge boson of mass. 10 MeV. The UV complete model should be of course electroweak invariant which in general implies that along with neutrinos, charged fermions also acquire new interactions on which there are strong bounds. We enumerate the bounds that already exist on the electroweak symmetric models and demonstrate that it is possible to build viable models avoiding all these bounds. In the end, we review methods to test these models and suggest approaches to break the degeneracies in deriving neutrino mass parameters caused by NSI.  
  Address [Farzan, Yasaman] Inst Res Fundamental Sci, Sch Phys, Tehran, Iran, Email: mariam@ific.uv.es  
  Corporate Author Thesis  
  Publisher Frontiers Research Foundation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-424x ISBN Medium  
  Area Expedition Conference  
  Notes (up) WOS:000426198100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3502  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva