toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Chu, X.Y.; Garani, R.; Garcia-Cely, C.; Hambye, T. url  doi
openurl 
  Title Dark matter bound-state formation in the Sun Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 045 - 32pp  
  Keywords Models for Dark Matter; Specific BSM Phenomenology; Neutrino Interactions; Early Universe Particle Physics  
  Abstract The Sun may capture asymmetric dark matter (DM), which can subsequently form bound-states through the radiative emission of a sub-GeV scalar. This process enables generation of scalars without requiring DM annihilation. In addition to DM capture on nucleons, the DM-scalar coupling responsible for bound-state formation also induces capture from self-scatterings of ambient DM particles with DM particles already captured, as well as with DM bound-states formed in-situ within the Sun. This scenario is studied in detail by solving Boltzmann equations numerically and analytically. In particular, we take into consideration that the DM self-capture rates require a treatment beyond the conventional Born approximation. We show that, thanks to DM scatterings on bound-states, the number of DM particles captured increases exponentially, leading to enhanced emission of relativistic scalars through bound-state formation, whose final decay products could be observable. We explore phenomenological signatures with the example that the scalar mediator decays to neutrinos. We find that the neutrino flux emitted can be comparable to atmospheric neutrino fluxes within the range of energies below one hundred MeV. Future facilities like Hyper-K, and direct DM detection experiments can further test such scenario.  
  Address [Chu, Xiaoyong] Austrian Acad Sci, Inst High Energy Phys, Nikolsdorfer Gasse 18, A-1050 Vienna, Austria, Email: xiaoyong.chu@oeaw.ac.at;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes (up) WOS:001255993100008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6172  
Permanent link to this record
 

 
Author Beltran, R.; Bolton, P.D.; Deppisch, F.F.; Hati, C.; Hirsch, M. url  doi
openurl 
  Title Probing heavy neutrino magnetic moments at the LHC using long-lived particle searches Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 153 - 44pp  
  Keywords Neutrino Interactions; Non-Standard Neutrino Properties; Sterile or Heavy Neutrinos; Lepton Flavour Violation (charged)  
  Abstract We explore long-lived particle (LLP) searches using non-pointing photons at the LHC as a probe for sterile-to-sterile and active-to-sterile transition magnetic dipole moments of sterile neutrinos. We consider heavy sterile neutrinos with masses ranging from a few GeV to several hundreds of GeV. We discuss transition magnetic dipole moments using the Standard Model effective field theory and low-energy effective field theory extended by sterile neutrinos (NRSMEFT and NRLEFT) and also provide a simplified UV-complete model example. LLP searches at the LHC using non-pointing photons will probe sterile-to-sterile dipole moments two orders of magnitude below the current best constraints from LEP, while an unprecedented sensitivity to sterile neutrino mass of about 700 GeV is expected for active-to-sterile dipole moments. For the UV model example with one-loop transition magnetic moments, the searches for charged lepton flavour violating processes in synergy with LLP searches at the LHC can probe new physics at several TeV mass scales and provide valuable insights into the lepton flavour structure of new physics couplings.  
  Address [Beltran, Rebeca; Hati, Chandan; Hirsch, Martin] Univ Valencia, CSIC, Inst Fis Corpuscular, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: rebeca.beltran@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes (up) WOS:001271719800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6217  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva