|   | 
Details
   web
Records
Author Cottin, G.; Helo, J.C.; Hirsch, M.; Titov, A.; Wang, Z.S.
Title Heavy neutral leptons in effective field theory and the high-luminosity LHC Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 039 - 34pp
Keywords Beyond Standard Model; Effective Field Theories; Neutrino Physics
Abstract Heavy neutral leptons (HNLs) with masses around the electroweak scale are expected to be rather long-lived particles, as a result of the observed smallness of the active neutrino masses. In this work, we study long-lived HNLs in NRSMEFT, a Standard Model (SM) extension with singlet fermions to which we add non-renormalizable operators up to dimension-6. Operators which contain two HNLs can lead to a sizable enhancement of the production cross sections, compared to the minimal case where HNLs are produced only via their mixing with the SM neutrinos. We calculate the expected sensitivities for the ATLAS detector and the future far-detector experiments: AL3X, ANUBIS, CODEX-b, FASER, MATHUSLA, and MoEDAL-MAPP in this setup. The sensitive ranges of the HNL mass and of the active-heavy mixing angle are much larger than those in the minimal case. We study both, Dirac and Majorana, HNLs and discuss how the two cases actually differ phenomenologically, for HNL masses above roughly 100 GeV.
Address [Cottin, Giovanna] Univ Adolfo Ibanez, Fac Artes Liberales, Dept Ciencias, Diagonal Las Torres 2640, Santiago, Chile, Email: giovanna.cottin@uai.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes (up) WOS:000694840800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4970
Permanent link to this record
 

 
Author Falkowski, A.; Gonzalez-Alonso, M.; Kopp, J.; Soreq, Y.; Tabrizi, Z.
Title EFT at FASER nu Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 086 - 46pp
Keywords Effective Field Theories; Neutrino Physics
Abstract We investigate the sensitivity of the FASER nu detector to new physics in the form of non-standard neutrino interactions. FASER nu, which will be installed 480 m downstream of the ATLAS interaction point, will for the first time study interactions of multi-TeV neutrinos from a controlled source. Our formalism – which is applicable to any current and future neutrino experiment – is based on the Standard Model Effective Theory (SMEFT) and its counterpart, Weak Effective Field Theory (WEFT), below the electroweak scale. Starting from the WEFT Lagrangian, we compute the coefficients that modify neutrino production in meson decays and detection via deep-inelastic scattering, and we express the new physics effects in terms of modified flavor transition probabilities. For some coupling structures, we find that FASER nu will be able to constrain interactions that are two to three orders of magnitude weaker than Standard Model weak interactions, implying that the experiment will be indirectly probing new physics at the multi-TeV scale. In some cases, FASER nu constraints will become comparable to existing limits – some of them derived for the first time in this paper – already with 150 fb(-1) of data.
Address [Falkowski, Adam] Univ Paris Saclay, CNRS, IN2P3, IJCLab, F-91405 Orsay, France, Email: afalkows017@gmail.com;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes (up) WOS:000707348700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5002
Permanent link to this record
 

 
Author Bonilla, J.; Brivio, I.; Gavela, M.B.; Sanz, V.
Title One-loop corrections to ALP couplings Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages 168 - 57pp
Keywords Beyond Standard Model; Effective Field Theories; Renormalization Group
Abstract The plethora of increasingly precise experiments which hunt for axion-like particles (ALPs), as well as their widely different energy reach, call for the theoretical understanding of ALP couplings at loop-level. We derive the one-loop contributions to ALP-SM effective couplings, including finite corrections. The complete leading-order – dimension five – effective linear Lagrangian is considered. The ALP is left off-shell, which is of particular impact on LHC and accelerator searches of ALP couplings to gamma gamma, ZZ, WW, Z gamma gluons and fermions. All results are obtained in the covariant Rg gauge. A few phenomenological consequences are also explored as illustration, with flavour diagonal channels in the case of fermions: in particular, we explore constraints on the coupling of the ALP to top quarks, that can be extracted from LHC data, from astrophysical sources and from Dark Matter direct detection experiments such as PandaX, LUX and XENONIT. Furthermore, we clarify the relation between alternative ALP bases, the role of gauge anomalous couplings and their interface with chirality-conserving and chirality-flip fermion interactions, and we briefly discuss renormalization group aspects.
Address [Bonilla, J.; Gavela, M. B.] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain, Email: jesus.bonilla@ua.m.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes (up) WOS:000721914800006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5029
Permanent link to this record
 

 
Author Garani, R.; Gasparotto, F.; Mastrolia, P.; Munch, H.J.; Palomares-Ruiz, S.; Primo, A.
Title Two-photon exchange in leptophilic dark matter scenarios Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 212 - 42pp
Keywords Cosmology of Theories beyond the SM; Effective Field Theories; Integrable Hierarchies
Abstract In leptophilic scenarios, dark matter interactions with nuclei, relevant for direct detection experiments and for the capture by celestial objects, could only occur via loop-induced processes. If the mediator is a scalar or pseudo-scalar particle, which only couples to leptons, the dominant contribution to dark matter-nucleus scattering would take place via two-photon exchange with a lepton triangle loop. The corresponding diagrams have been estimated in the literature under different approximations. Here, we present new analytical calculations for one-body two-loop and two-body one-loop interactions. The two-loop form factors are presented in closed analytical form in terms of generalized polylogarithms up to weight four. In both cases, we consider the exact dependence on all the involved scales, and study the dependence on the momentum transfer. We show that some previous approximations fail to correctly predict the scattering cross section by several orders of magnitude. Moreover, we quantitatively show that form factors in the range of momentum transfer relevant for local galactic dark matter, can be significantly smaller than their value at zero momentum transfer, which is the approach usually considered.
Address [Garani, Raghuveer] Ist Nazl Fis Nucl, Sez Firenze, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy, Email: garani@fi.infn.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes (up) WOS:000736468500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5068
Permanent link to this record
 

 
Author Beltran, R.; Cottin, G.; Helo, J.C.; Hirsch, M.; Titov, A.; Wang, Z.S.
Title Long-lived heavy neutral leptons at the LHC: four-fermion single-N-R operators Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 044 - 18pp
Keywords Beyond Standard Model; Effective Field Theories; Neutrino Physics
Abstract Interest in searches for heavy neutral leptons (HNLs) at the LHC has increased considerably in the past few years. In the minimal scenario, HNLs are produced and decay via their mixing with active neutrinos in the Standard Model (SM) spectrum. However, many SM extensions with HNLs have been discussed in the literature, which sometimes change expectations for LHC sensitivities drastically. In the N-R SMEFT, one extends the SM effective field theory with operators including SM singlet fermions, which allows to study HNL phenomenology in a “model independent” way. In this paper, we study the sensitivity of ATLAS to HNLs in the N-R SMEFT for four-fermion operators with a single HNL. These operators might dominate both production and decay of HNLs, and we find that new physics scales in excess of 20 TeV could be probed at the high-luminosity LHC.
Address [Beltran, Rebeca; Hirsch, Martin] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Apartado 22085, E-46071 Valencia, Spain, Email: rebeca.beltran@ifis.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes (up) WOS:000742012500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5079
Permanent link to this record