|   | 
Details
   web
Records
Author Utrilla Gines, E.; Mena, O.; Witte, S.J.
Title Revisiting constraints on WIMPs around primordial black holes Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 106 Issue 6 Pages 063538 - 14pp
Keywords
Abstract While primordial black holes (PBHs) with masses MPBH greater than or similar to 10-11 Mo cannot comprise the entirety of dark matter, the existence of even a small population of these objects can have profound astrophysical consequences. A subdominant population of PBHs will efficiently accrete dark matter particles before matter-radiation equality, giving rise to high-density dark matter spikes. We consider here the scenario in which dark matter is comprised primarily of weakly interacting massive particles (WIMPs) with a small subdominant contribution coming from PBHs, and revisit the constraints on the annihilation of WIMPs in these spikes using observations of the isotropic gamma-ray background (IGRB) and the cosmic microwave background (CMB), for a range of WIMP masses, annihilation channels, cross sections, and PBH mass functions. We find that the constraints derived using the IGRB have been significantly overestimated (in some cases by many orders of magnitude), and that limits obtained using observations of the CMB are typically stronger than, or comparable to, those coming from the IGRB. Importantly, we show that similar to OoMo thorn PBHs can still contribute significantly to the dark matter density for sufficiently low WIMP masses and p-wave annihilation cross sections.
Address [Utrilla Gines, Estanis; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Parc Cient UV,C Catedrat Jose Beltran 2, E-46980 Paterna, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes (down) WOS:000866519600007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5390
Permanent link to this record
 

 
Author DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue 10 Pages 903 - 19pp
Keywords
Abstract Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation.
Address [Isenhower, L.] Abilenexs Christian Univ, Abilene, TX 79601 USA, Email: tjyang@fnal.gov
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes (down) WOS:000866503200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5386
Permanent link to this record
 

 
Author D'Eramo, F.; Di Valentino, E.; Giare, W.; Hajkarim, F.; Melchiorri, A.; Mena, O.; Renzi, F.; Yun, S.
Title Cosmological bound on the QCD axion mass, redux Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 09 Issue 9 Pages 022 - 35pp
Keywords axions; cosmology of theories beyond the SM; cosmological neutrinos; neutrino masses from cosmology
Abstract We revisit the joint constraints in the mixed hot dark matter scenario in which both thermally produced QCD axions and relic neutrinos are present. Upon recomputing the cosmological axion abundance via recent advances in the literature, we improve the state-of-the-art analyses and provide updated bounds on axion and neutrino masses. By avoiding approximate methods, such as the instantaneous decoupling approximation, and limitations due to the limited validity of the perturbative approach in QCD that forced to artificially divide the constraints from the axion-pion and the axion-gluon production channels, we find robust and self-consistent limits. We investigate the two most popular axion frameworks: KSVZ and DFSZ. From Big Bang Nucleosynthesis (BBN) light element abundances data we find for the KSVZ axion Delta N-eff < 0.31 and an axion mass bound m(a) < 0.53 eV (i.e., a bound on the axion decay constant f(a) > 1.07 x 10(7) GeV) both at 95% CL. These BBN bounds are improved to Delta N-eff < 0.14 and m(a) < 0.16 eV (f(a) > 3.56 x 10(7) GeV) if a prior on the baryon energy density from Cosmic Microwave Background (CMB) data is assumed. When instead considering cosmological observations from the CMB temperature, polarization and lensing from the Planck satellite combined with large scale structure data we find Delta N-eff < 0.23, m(a) < 0.28 eV (f(a) > 2.02 x 10(7) GeV) and Sigma m(nu) < 0.16 eV at 95% CL. This corresponds approximately to a factor of 5 improvement in the axion mass bound with respect to the existing limits. Very similar results are obtained for the DFSZ axion. We also forecast upcoming observations from future CMB and galaxy surveys, showing that they could reach percent level errors for m(a) similar to 1 eV.
Address [D'Eramo, Francesco; Hajkarim, Fazlollah; Yun, Seokhoon] Univ Padua, Dipartimento Fis & Astron, Via Marzolo 8, I-35131 Padua, Italy, Email: francesco.deramo@pd.infn.it;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes (down) WOS:000863296000010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5383
Permanent link to this record
 

 
Author Di Valentino, E.; Gariazzo, S.; Mena, O.
Title Model marginalized constraints on neutrino properties from cosmology Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 106 Issue 4 Pages 043540 - 9pp
Keywords
Abstract We present robust, model-marginalized limits on both the total neutrino mass (E m1,) and abundances (Neff) to minimize the role of parametrizations, priors and models when extracting neutrino properties from cosmology. The cosmological observations we consider are cosmic microwave background temperature fluctuation and polarization measurements, supernovae Ia luminosity distances, baryon acoustic oscillation observations and determinations of the growth rate parameter from the Data Release 16 of the Sloan Digital Sky Survey IV. The degenerate neutrino mass spectrum (which implies the prior sigma m(1), > 0) is weakly or moderately preferred over the normal and inverted hierarchy possibilities, which imply the priors sigma m(1), > 0.06 and sigma m(1), > 0.1 eV respectively. Concerning the underlying cosmological model, the ACDM minimal scenario is almost always strongly preferred over the possible extensions explored here. The most constraining 95% CL bound on the total neutrino mass in the ACDM + sigma m(1), picture is sigma m(1), < 0.087 eV. The parameter N-eff is restricted to 3.08 +/- 0.17 (68% CL) in the ACDM + Neff model. These limits barely change when considering the ACDM + sigma m(1), + Neff scenario. Given the robustness and the strong constraining power of the cosmological measurements employed here, the model -marginalized posteriors obtained considering a large spectra of nonminimal cosmologies are very close to the previous bounds, obtained within the ACDM framework in the degenerate neutrino mass spectrum. Future cosmological measurements may improve the current Bayesian evidence favoring the degenerate neutrino mass spectra, challenging therefore the consistency between cosmological neutrino mass bounds and oscillation neutrino measurements, and potentially suggesting a more complicated cosmological model and/or neutrino sector.
Address [Di Valentino, Eleonora] Univ Sheffield, Sch Math & Stat, Hounsfield Rd, Sheffield S3 7RH, England, Email: e.divalentino@sheffield.ac.uk;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes (down) WOS:000862804700006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5375
Permanent link to this record
 

 
Author Pompa, F.; Capozzi, F.; Mena, O.; Sorel, M.
Title Absolute nu Mass Measurement with the DUNE Experiment Type Journal Article
Year 2022 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 129 Issue 12 Pages 121802 - 6pp
Keywords
Abstract Time of flight delay in the supernova neutrino signal offers a unique tool to set model-independent constraints on the absolute neutrino mass. The presence of a sharp time structure during a first emission phase, the so-called neutronization burst in the electron neutrino flavor time distribution, makes this channel a very powerful one. Large liquid argon underground detectors will provide precision measurements of the time dependence of the electron neutrino fluxes. We derive here a new v mass sensitivity attainable at the future DUNE far detector from a future supernova collapse in our galactic neighborhood, finding a sub-eV reach under favorable scenarios. These values are competitive with those expected for laboratory direct neutrino mass searches.
Address [Pompa, Federica; Capozzi, Francesco; Mena, Olga; Sorel, Michel] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Parc Cientif UV, c Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: federica.pompa@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes (down) WOS:000861178800003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5366
Permanent link to this record