|   | 
Details
   web
Records
Author Beaulieu, L.; Ballester, F.; Granero, D.; Tedgren, A.C.; Haworth, A.; Lowenstein, J.R.; Ma, Y.Z.; Mourtada, F.; Papagiannis, P.; Rivard, M.J.; Siebert, F.A.; Sloboda, R.S.; Smith, R.L.; Thomson, R.M.; Verhaegen, F.; Fonseca, G.; Vijande, J.
Title AAPM WGDCAB Report 372: A joint AAPM, ESTRO, ABG, and ABS report on commissioning of model-based dose calculation algorithms in brachytherapy Type Journal Article
Year 2023 Publication Medical Physics Abbreviated Journal Med. Phys.
Volume 50 Issue 8 Pages e946–e960
Keywords brachytherapy; commissioning; dose calculation; model-based dose calculation; Monte Carlo; TG-186
Abstract The introduction of model-based dose calculation algorithms (MBDCAs) in brachytherapy provides an opportunity for a more accurate dose calculation and opens the possibility for novel, innovative treatment modalities. The joint AAPM, ESTRO, and ABG Task Group 186 (TG-186) report provided guidance to early adopters. However, the commissioning aspect of these algorithms was described only in general terms with no quantitative goals. This report, from the Working Group on Model-Based Dose Calculation Algorithms in Brachytherapy, introduced a field-tested approach to MBDCA commissioning. It is based on a set of well-characterized test cases for which reference Monte Carlo (MC) and vendor-specific MBDCA dose distributions are available in a Digital Imaging and Communications in Medicine-Radiotherapy (DICOM-RT) format to the clinical users. The key elements of the TG-186 commissioning workflow are now described in detail, and quantitative goals are provided. This approach leverages the well-known Brachytherapy Source Registry jointly managed by the AAPM and the Imaging and Radiation Oncology Core (IROC) Houston Quality Assurance Center (with associated links at ESTRO) to provide open access to test cases as well as step-by-step user guides. While the current report is limited to the two most widely commercially available MBDCAs and only for Ir-192-based afterloading brachytherapy at this time, this report establishes a general framework that can easily be extended to other brachytherapy MBDCAs and brachytherapy sources. The AAPM, ESTRO, ABG, and ABS recommend that clinical medical physicists implement the workflow presented in this report to validate both the basic and the advanced dose calculation features of their commercial MBDCAs. Recommendations are also given to vendors to integrate advanced analysis tools into their brachytherapy treatment planning system to facilitate extensive dose comparisons. The use of the test cases for research and educational purposes is further encouraged.
Address [Beaulieu, Luc; Ma, Yunzhi] CHU Quebec Univ Laval, Serv Phys Med & Radioprotect, Quebec City, PQ, Canada, Email: beaulieu@phy.ulaval.ca
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-2405 ISBN Medium
Area Expedition Conference
Notes (up) WOS:001026540300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5579
Permanent link to this record
 

 
Author Abreu, L.M.; Dai, L.R.; Oset, E.
Title J/Psi decay to omega, phi, K*0 plus f0(1370), f0(1710), K0*(1430), f2(1270), f'2 (1525) and K2*(1430): Role of the D-wave for tensor production Type Journal Article
Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 843 Issue Pages 137999 - 10pp
Keywords
Abstract We reassess the decay of the J/Psi into an omega, phi, K*0 and one of the f0(1370), f0(1710), f2(1270), f'2 (1525), K0*(1430) and K2*(1430) resonances. We benefit from previous works that considered this reaction as a J/Psi decay into three vector mesons, with a scalar or tensor resonance being formed from the interaction of two of these vectors. The novelty here with respect to former studies is the investigation of the relation between the scalar meson and tensor productions for the first time. To this end, the spin structure of the four vectors present in the production vertex is analyzed, and the D-wave mechanism in the tensor production is included. Then, beyond the ratios studied previously involving scalar states and tensor states independently, new ratios relating the scalar and tensor meson productions are estimated. Our results suggest that the D-wave mechanism of tensor production assumes a relevant contribution. New experimental data reporting the angular distributions of these processes will be important for checking this conclusion.
Address [Abreu, Luciano M.] Univ Fed Bahia, Inst Fis, Campus Univ Ondina, BR-40170115 Salvador, BA, Brazil, Email: luciano.abreu@ufba.br;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes (up) WOS:001027532500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5574
Permanent link to this record
 

 
Author Gil-Dominguez, F.; Molina, R.
Title Quark mass dependence of the low-lying charmed mesons at one loop in HH & chi; PT Type Journal Article
Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 843 Issue Pages 137997 - 15pp
Keywords
Abstract We study the light and heavy quark mass dependence of the low-lying charmed mesons in the framework of one-loop HH & chi; PT. The low energy constants are determined by analyzing the available lattice data from different LQCD simulations. Model selection tools are implemented to determine the relevant parameters as required by data with a higher precision. Discretization and other effects due to the charm quark mass setting are discussed.
Address [Gil-Dominguez, Fernando] Ctr Mixto Univ Valencia CSIC, Dept Fis Teonca, Parc Cient UV , Catedrat Jose Beltran, 2, Paterna 46980, Spain, Email: fernando.gil@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes (up) WOS:001027549700001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5575
Permanent link to this record
 

 
Author Abreu, L.M.; Nery, E.S.; Correa, E.B.S.
Title Inverse magnetic catalysis and size-dependent effects on the chiral symmetry restoration Type Journal Article
Year 2023 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 59 Issue 7 Pages 157 - 12pp
Keywords
Abstract We investigate the combined finite-size and thermo-magnetic effects on the properties of the quark matter, in the context of the two-flavored Nambu-Jona-Lasinio model. In particular, by using the mean-field approximation and the Schwinger proper time method in a toroidal topology with periodic or antiperiodic conditions, we evaluate the chiral phase transition, the constituent quark mass and the thermal and spatial susceptibilities under the change of the size, temperature and strength of external magnetic field. To take into account the inverse magnetic catalysis phenomenon, we make use of a recently proposed magnetized coupling constant. The findings suggest that the observables are strongly affected by the variation of the variables and also by the periodicity of the boundary conditions, with the final outcomes depending on the balance of these competing phenomena.
Address [Abreu, Luciano M.; Nery, Elenilson S.] Univ Fed Bahia, Inst Fis, BR-40170115 Salvador, BA, Brazil, Email: luciano.abreu@ufba.br;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes (up) WOS:001029139600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5581
Permanent link to this record
 

 
Author Autieri, A.; Cieri, L.; Ferrera, G.; Sborlini, G.F.R.
Title Combining QED and QCD transverse-momentum resummation for W and Z boson production at hadron colliders Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 104 - 30pp
Keywords Electroweak Precision Physics; Precision QED; Resummation
Abstract In this article, we consider the transverse momentum (qT) distribution of W and Z bosons produced in hadronic collisions. We combine the qT resummation for QED and QCD radiation including the QED soft emissions from the W boson in the final state. In particular, we perform the resummation of enhanced logarithmic contributions due to soft and collinear emissions at next-to-leading accuracy in QED, leading-order accuracy for mixed QED-QCD and next-to-next-to-leading accuracy in QCD. In the small-qT region we consistently include in our results the next-to-next-to-leading order (i.e. two loops) QCD corrections and the next-to-leading order (i.e. one loop) electroweak corrections. The matching with the fixed-order calculation at large qT has been performed at next-to-leading order in QCD (i.e. at O(alpha(2)(S))) and at leading order in QED. We show numerical results for W and Z production at the Tevatron and the LHC. Finally, we consider the effect of combined QCD and QED resummation for the ratio of W and Z qT distributions, and we study the impact of the QED corrections providing an estimate of the corresponding perturbative uncertainties.
Address [Autieri, Andrea; Cieri, Leandro] Univ Valencia, Consejo Super Invest Cient, Inst Fis Corpuscular, Parc Cientif, E-46980 Valencia, Spain, Email: andrea.autieri@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes (up) WOS:001030009700004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5596
Permanent link to this record