toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Olmo, G.J.; Rubiera-Garcia, D.; Wojnar, A. url  doi
openurl 
  Title Minimum main sequence mass in quadratic Palatini f(R) gravity Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue 4 Pages 044020 - 9pp  
  Keywords  
  Abstract General relativity yields an analytical prediction of a minimum required mass of roughly similar to 0.08-0.09 M-circle dot for a star to stably burn sufficient hydrogen to fully compensate photospheric losses and, therefore, to belong to the main sequence. Those objects below this threshold ( brown dwarfs) eventually cool down without any chance to stabilize their internal temperature. In this work we consider quadratic Palatini f(R) gravity and show that the corresponding Newtonian hydrostatic equilibrium equation contains a new term whose effect is to introduce a weakening/strengthening of the gravitational interaction inside astrophysical bodies. This fact modifies the general relativity prediction for this minimum main sequence mass. Through a crude analytical modeling we use this result in order to constraint a combination of the quadratic f(R) gravity parameter and the central density according to astrophysical observations.  
  Address [Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, Ctr Mixto, CSIC, E-46100 Valencia, Spain, Email: gonzalo.olmo@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:000480390800009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4108  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aaboud, M. et al); Alvarez Piqueras, D.; Aparisi Pozo, J.A.; Bailey, A.J.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Miñano, M.; Mitsou, V.A.; Rodriguez Bosca, S.; Rodriguez Rodriguez, D.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M. url  doi
openurl 
  Title Electron reconstruction and identification in the ATLAS experiment using the 2015 and 2016 LHC proton-proton collision data at s=13 TeV Type Journal Article
  Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 79 Issue 8 Pages 639 - 40pp  
  Keywords  
  Abstract Algorithms used for the reconstruction and identification of electrons in the central region of the ATLAS detector at the Large Hadron Collider (LHC) are presented in this paper; these algorithms are used in ATLAS physics analyses that involve electrons in the final state and which are based on the 2015 and 2016 proton-proton collision data produced by the LHC at root s = 13 The performance of the electron reconstruction, identification, isolation, and charge identification algorithms is evaluated in data and in simulated samples using electrons from Z -> ee and J/psi -> eedecays. Typical examples of combinations of electron reconstruction, identification, and isolation operating points used in ATLAS physics analyses are shown.  
  Address [Duvnjak, D.; Jackson, P.; Oliver, J. L.; Petridis, A.; Qureshi, A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:000480245700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4112  
Permanent link to this record
 

 
Author Guadilla, V.; Algora, A.; Tain, J.L.; Agramunt, J.; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Orrigo, S.E.A.; Rubio, B.; Valencia, E. url  doi
openurl 
  Title Total absorption gamma-ray spectroscopy of niobium isomers Type Journal Article
  Year 2019 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 100 Issue 2 Pages 024311 - 15pp  
  Keywords  
  Abstract The beta-intensity distributions of the decays of Nb-100gs,Nb-100m and Nb-102gs,Nb-102m have been determined using the total absorption gamma-ray spectroscopy technique. The JYFLTRAP double Penning trap system was employed in a campaign of challenging measurements performed with the decay total absorption gamma-ray spectrometer at the Ion Guide Isotope Separator On-Line facility in Jyvaskyla. Different strategies were applied to disentangle the isomeric states involved, lying very close in energy. The low-spin component of each niobium case was populated through the decay of the zirconium parent, which was treated as a contaminant. We have applied a method to extract this contamination, and additionally we have obtained beta-intensity distributions for these zirconium decays. The beta-strength distributions evaluated with these results were compared with calculations in a quasiparticle random-phase approximation, suggesting a prolate configuration for the ground states of Zr-100,Zr-102. The footprint of the Pandemonium effect was found when comparing our results for the analyses of the niobium isotopes with previous decay data. The beta-intensities of the decay of Nb-102m, for which there were no previous data, were obtained. A careful evaluation of the uncertainties was carried out, and the consistency of our results was validated taking advantage of the segmentation of our spectrometer. The final results were used as input in reactor summation calculations. A large impact on antineutrino spectrum calculations was already reported, and here we detail the significant impact on decay heat calculations.  
  Address [Guadilla, V; Algora, A.; Tain, J. L.; Agramunt, J.; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Orrigo, S. E. A.; Rubio, B.; Valencia, E.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: guadilla@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:000480237600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4105  
Permanent link to this record
 

 
Author Beltran Jimenez, J.; Delhom, A. url  doi
openurl 
  Title Ghosts in metric-affine higher order curvature gravity Type Journal Article
  Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 79 Issue 8 Pages 656 - 7pp  
  Keywords  
  Abstract We disprove the widespread belief that higher order curvature theories of gravity in the metric-affine formalism are generally ghost-free. This is clarified by considering a sub-class of theories constructed only with the Ricci tensor and showing that the non-projectively invariant sector propagates ghost-like degrees of freedom. We also explain how these pathologies can be avoided either by imposing a projective symmetry or additional constraints in the gravity sector. Our results put forward that higher order curvature gravity theories generally remain pathological in the metric-affine (and hybrid) formalisms and highlight the key importance of the projective symmetry and/or additional constraints for their physical viability and, by extension, of general metric-affine theories.  
  Address [Beltran Jimenez, Jose] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain, Email: jose.beltran@usal.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:000479306500020 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4109  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Alvarez Piqueras, D.; Aparisi Pozo, J.A.; Bailey, A.J.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Miñano, M.; Mitsou, V.A.; Rodriguez Bosca, S.; Rodriguez Rodriguez, D.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M. url  doi
openurl 
  Title Observation of Light-by-Light Scattering in Ultraperipheral Pb plus Pb Collisions with the ATLAS Detector Type Journal Article
  Year 2019 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 123 Issue 5 Pages 052001 - 21pp  
  Keywords  
  Abstract This Letter describes the observation of the light-by-light scattering process, gamma gamma -> gamma gamma, in Pb + Pb collisions at root S-NN = 5.02 TeV. The analysis is conducted using a data sample corresponding to an integrated luminosity of 1.73 nb(-1), collected in November 2018 by the ATLAS experiment at the LHC. Light-by-light scattering candidates are selected in events with two photons produced exclusively, each with transverse energy E-T(gamma) > 3 GeV and pseudorapidity vertical bar eta(gamma)vertical bar < 2.4, diphoton invariant mass above 6 GeV, and small diphoton transverse momentum and acoplanarity. After applying all selection criteria, 59 candidate events are observed for a background expectation of 12 +/- 3 events. The observed excess of events over the expected background has a significance of 8.2 standard deviations. The measured fiducial cross section is 78 +/- 13(stat) +/- 7(syst) +/- 3(lumi) nb.  
  Address [Deliot, F.; Duvnjak, D.; Jackson, P.; Oliver, J. L.; Petridis, A.; Qureshi, A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:000479003100006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4107  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva