toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author ANTARES, IceCube, Pierre Auger and Telescope Array Collaborations (Albert, A. et al); Alves, S.; Calvo, D.; Carretero, V.; Gozzini, R.; Hernandez-Rey, J.J.; Khan-Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Real, D.; Sanchez-Losa, A.; Salesa Greus, F.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Search for Spatial Correlations of Neutrinos with Ultra-high-energy Cosmic Rays Type Journal Article
  Year 2022 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 934 Issue 2 Pages 164 - 21pp  
  Keywords Neutrino astronomy; High energy astrophysics; Ultra-high-energy cosmic radiation  
  Abstract For several decades, the origin of ultra-high-energy cosmic rays (UHECRs) has been an unsolved question of high-energy astrophysics. One approach for solving this puzzle is to correlate UHECRs with high-energy neutrinos, since neutrinos are a direct probe of hadronic interactions of cosmic rays and are not deflected by magnetic fields. In this paper, we present three different approaches for correlating the arrival directions of neutrinos with the arrival directions of UHECRs. The neutrino data are provided by the IceCube Neutrino Observatory and ANTARES, while the UHECR data with energies above similar to 50 EeV are provided by the Pierre Auger Observatory and the Telescope Array. All experiments provide increased statistics and improved reconstructions with respect to our previous results reported in 2015. The first analysis uses a high-statistics neutrino sample optimized for point-source searches to search for excesses of neutrino clustering in the vicinity of UHECR directions. The second analysis searches for an excess of UHECRs in the direction of the highest-energy neutrinos. The third analysis searches for an excess of pairs of UHECRs and highest-energy neutrinos on different angular scales. None of the analyses have found a significant excess, and previously reported overfluctuations are reduced in significance. Based on these results, we further constrain the neutrino flux spatially correlated with UHECRs.  
  Address [Albert, A.; Drouhin, D.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:000837839400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5333  
Permanent link to this record
 

 
Author Coito, L.; Faubel, C.; Herrero-Garcia, J.; Santamaria, A.; Titov, A. url  doi
openurl 
  Title Sterile neutrino portals to Majorana dark matter: effective operators and UV completions Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 085 - 36pp  
  Keywords Models for Dark Matter; Particle Nature of Dark Matter; Sterile or Heavy Neutrinos; Baryon/Lepton Number Violation  
  Abstract Stringent constraints on the interactions of dark matter with the Standard Model suggest that dark matter does not take part in gauge interactions. In this regard, the possibility of communicating between the visible and dark sectors via gauge singlets seems rather natural. We consider a framework where the dark matter talks to the Standard Model through its coupling to sterile neutrinos, which generate active neutrino masses. We focus on the case of Majorana dark matter, with its relic abundance set by thermal freeze-out through annihilations into sterile neutrinos. We use an effective field theory approach to study the possible sterile neutrino portals to dark matter. We find that both lepton-number-conserving and lepton-number-violating operators are possible, yielding an interesting connection with the Dirac/Majorana character of active neutrinos. In a second step, we open the different operators and outline the possible renormalisable models. We analyse the phenomenology of the most promising ones, including a particular case in which the Majorana mass of the sterile neutrinos is generated radiatively.  
  Address [Coito, Leonardo] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: leonardo.coito@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:000836782300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5340  
Permanent link to this record
 

 
Author Gololo, M.G.D.; Carrio Argos, F.; Mellado, B. url  doi
openurl 
  Title Tile Computer-on-Module for the ATLAS Tile Calorimeter Phase-II upgrades Type Journal Article
  Year 2022 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 17 Issue 6 Pages P06020 - 14pp  
  Keywords Control and monitor systems online; Detector control systems (detector and experiment monitoring and slow-control systems, architecture, hardware, algorithms, databases); Data acquisition circuits; Digital electronic circuits  
  Abstract The Tile PreProcessor (TilePPr) is the core element of the Tile Calorimeter (TileCal) off-detector electronics for High-luminosity Large Hadron Collider (HL-LHC). The TilePPr comprises FPGA-based boards to operate and read out the TileCal on-detector electronics. The Tile Computer on Module (TileCoM) mezzanine is embedded within TilePPr to carry out three main functionalities. These include remote configuration of on-detector electronics and TilePPr FPGAs, interface the TilePPr with the ATLAS Trigger and Data Acquisition (TDAQ) system, and interfacing the TilePPr with the ATLAS Detector Control System (DCS) by providing monitoring data. The TileCoM is a 10-layer board with a Zynq UltraScale+ ZU2CG for processing data, interface components to integrate with TilePPr and the power supply to be connected to the Advanced Telecommunication Computing Architecture carrier. A CentOS embedded Linux is deployed on the TileCoM to implement the required functionalities for the HL-LHC. In this paper we present the hardware and firmware developments of the TileCoM system in terms of remote programming, interface with ATLAS TDAQ system and DCS system.  
  Address [Gololo, M. G. D.; Argos, F. Carrio; Mellado, B.] Univ Witwatersrand, Inst Collider Particle Phys, 1 Jan Smuts Ave, ZA-2000 Johannesburg, South Africa, Email: mpho.gift.doctor.gololo@cern.ch  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:000836448900004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5335  
Permanent link to this record
 

 
Author Coloma, P.; Hernandez, P.; Urrea, S. url  doi
openurl 
  Title New bounds on axion-like particles from MicroBooNE Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 025 - 25pp  
  Keywords Axions and ALPs; Kaons  
  Abstract Neutrino experiments lie at the edge of the intensity frontier and therefore can be exploited to search for new light particles weakly coupled to the visible sector. In this work we derive new constraints on axion-like particles (ALPs) using data from the MicroBooNE experiment, from a search for e(+)e(-) pairs pointing in the direction of the NuMI absorber. In particular, we consider the addition of higher-dimensional effective operators coupling the ALP to the electroweak gauge bosons. These would induce K -> pi a from kaon decay at rest in the NuMI absorber, as well as ALP decays into pairs of leptons or photons. We discuss in detail and compare various results obtained for the decay width K -> pi a in previous literature. For the operator involving the Higgs, MicroBooNE already sets competitive bounds (comparable to those of NA62) for ALP masses between 100 and 200 MeV. We also compute the expected sensitivities from the full NuMI dataset recorded at MicroBooNE. Our results show that a search for a -> gamma gamma signal may be able to improve over current constraints from beam-dump experiments on the operator involving the ALP coupling to the W.  
  Address [Coloma, Pilar] Univ Autonoma Madrid, Inst Fis Teor UAM CSIC, Calle Nicolas Cabrera 1315, E-28049 Madrid, Spain, Email: pilar.coloma@ift.csic.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:000836240700003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5323  
Permanent link to this record
 

 
Author HAWC Collaboration (Alfaro, R. et al); Salesa Greus, F. url  doi
openurl 
  Title Study of the Very High Energy Emission of M87 through its Broadband Spectral Energy Distribution Type Journal Article
  Year 2022 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 934 Issue 2 Pages 158 - 9pp  
  Keywords  
  Abstract The radio galaxy M87 is the central dominant galaxy of the Virgo Cluster. Very high-energy (VHE, greater than or similar to 0.1 TeV) emission from M87 has been detected by imaging air Cherenkov telescopes. Recently, marginal evidence for VHE long-term emission has also been observed by the High Altitude Water Cherenkov Observatory, a gamma-ray and cosmic-ray detector array located in Puebla, Mexico. The mechanism that produces VHE emission in M87 remains unclear. This emission originates in its prominent jet, which has been spatially resolved from radio to X-rays. In this paper, we construct a spectral energy distribution from radio to gamma rays that is representative of the nonflaring activity of the source, and in order to explain the observed emission, we fit it with a lepto-hadronic emission model. We found that this model is able to explain nonflaring VHE emission of M87 as well as an orphan flare reported in 2005.  
  Address [Alfaro, R.; Avila Rojas, D.; Belmont-Moreno, E.; Espinoza, C.; Vargas, H. Leon; Sandoval, A.; Serna-Franco, J.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City, DF, Mexico, Email: alberto@inaoep.mx;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:000835832700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5334  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva