|   | 
Details
   web
Records
Author Araujo Filho, A.A.; Hassanabadi, H.; Reis, J.A.A.S.; Lisboa-Santos, L.
Title Thermodynamics of a quantum ring modified by Lorentz violation Type Journal Article
Year 2023 Publication Physica Scripta Abbreviated Journal Phys. Scr.
Volume 98 Issue 6 Pages 065943 - 13pp
Keywords quantum ring; thermodynamic properties; Lorentz violation
Abstract In this work, we investigate the consequences of Lorentz-violating terms in the thermodynamic properties of a 1-dimensional quantum ring. In particular, we use the ensemble theory to obtain our results of interest. The thermodynamic functions as well as the spin currents are calculated as a function of the temperature. We observe that parameter xi, which triggers the Lorentz symmetry breaking, plays a major role in low temperature regime. Finally, depending on the configuration of the system, electrons can rotate in two different directions: clockwise and counterclockwise.
Address [Araujo Filho, A. A.] Univ Valencia, Ctr Mixto, Dept Fis Teor, CSIC, Valencia 46100, Spain, Email: dilto@fisica.ufc.br;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8949 ISBN Medium
Area Expedition Conference
Notes (up) WOS:000989669300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5556
Permanent link to this record
 

 
Author AMON Team, ANTARES and HAWC Collaborations (Ayala Solares, H.A. et al); Alves Garres, S.; Calvo, D.; Carretero, V.; Gozzini, R.; Hernandez-Rey, J.J.; Manczak, J.; Pieterse, C.; Real, D.; Sanchez-Losa, A.; Zornoza, J. D.; Zuniga, J.; Salesa Greus, F.
Title Search for Gamma-Ray and Neutrino Coincidences Using HAWC and ANTARES Data Type Journal Article
Year 2023 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 944 Issue 2 Pages 166 - 9pp
Keywords
Abstract In the quest for high-energy neutrino sources, the Astrophysical Multimessenger Observatory Network has implemented a new search by combining data from the High Altitude Water Cherenkov (HAWC) Observatory and the Astronomy with a Neutrino Telescope and Abyss environmental RESearch (ANTARES) neutrino telescope. Using the same analysis strategy as in a previous detector combination of HAWC and IceCube data, we perform a search for coincidences in HAWC and ANTARES events that are below the threshold for sending public alerts in each individual detector. Data were collected between 2015 July and 2020 February with a live time of 4.39 yr. Over this time period, three coincident events with an estimated false-alarm rate of <1 coincidence per year were found. This number is consistent with background expectations.
Address [Solares, H. A. Ayala; Coutu, S.; Cowen, D.; Fox, D. B.; Gregoire, T.; Mostafa, M.; Murase, K.; Wissel, S.; Alonso, M. Fernandez; Whitaker, K.] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA, Email: hgayala@psu.edu
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes (up) WOS:000989686100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5566
Permanent link to this record
 

 
Author Babeluk, M. et al; Marinas, C.
Title CMOS MAPS upgrade for the Belle II Vertex Detector Type Journal Article
Year 2023 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1048 Issue Pages 168015 - 5pp
Keywords Belle II; VXD; SVD; PXD; VTX; Upgrade; CMOS; DMAPS
Abstract The success of the Belle II experiment in Japan relies on the very high instantaneous luminosity, close to 6x1035 cm-2 s-1, expected from the SuperKEKB collider. The corresponding beam conditions at such luminosity levels generate large rates of background particles and creates stringent constraints on the vertex detector, adding to the physics requirements. Current prospects for the occupancy rates in the present vertex detector (VXD) at full luminosity fall close to the acceptable limits and bear large uncertainties. In this context, the Belle II collaboration is considering the possibility to install an upgraded VXD system around 2027 to provide a sufficient safety margin with respect to the expected background rate and possibly enhance tracking and vertexing performance. The VTX collaboration has started the design of a fully pixelated VXD, called VTX, based on fast and highly granular Depleted Monolithic Active Pixel Sensors (DMAPS) integrated on light support structures. The two main technical features of the VTX proposal are the usage of a single sensor type over all the layers of the system and the overall material budget below 2% of radiation length, compared to the current VXD which has two different sensor technologies and about 3% of radiation length. A dedicated sensor (OBELIX), taylored to the specific needs of Belle II, is under development, evolving from the existing TJ-Monopix2 sensor. The time-stamping precision below 100 ns will allow all VTX layers to take part in the track finding strategy contrary to the current situation. The first two detection layers are designed according to a self-supported all-silicon ladder concept, where 4 contiguous sensors are diced out of a wafer, thinned and interconnected with post-processed redistribution layers. The outermost detection layers follow a more conventional approach with a cold plate and carbon fibre support structure, and light flex cables interconnecting the sensors. This document will review the context, technical details and development status of the proposed Belle II VTX.
Address [Babeluk, M.; Bergauer, T.; Irmler, C.; Schwanda, C.] Austrian Acad Sci, Inst High Energy Phys, A-1050 Vienna, Austria, Email: christian.wessel@desy.de
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes (up) WOS:000990246200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5538
Permanent link to this record
 

 
Author Feijoo, A.; Wang, W.F.; Xiao, C.W.; Wu, J.J.; Oset, E.; Nieves, J.; Zou, B.S.
Title A new look at the P-cs states from a molecular perspective Type Journal Article
Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 839 Issue Pages 137760 - 7pp
Keywords
Abstract We have a look at the P-cs states generated from the interaction of (D) over bar(*)Xi(c)('*) coupled channels. We consider the blocks of pseudoscalar-baryon (1/2(+) , 3/2(+)) and vector-baryon (1/2(+), 3/2(+)), and find 10 resonant states coupling mostly to (D) over bar Xi(c), <(D)*over bar>*Xi(c), (D) over bar Xi(c)' <(DA novel aspect of the work is the realization that the <(Dover bar>Xi(c), (Dover bar>(s) Lambda(c) or (Dover bar>*Xi(c), D-s*Lambda(c) channels, with a strong transition potential, collaborate to produce a larger attraction than the corresponding states <(Dover bar>Xi(c), <(Dover bar>Lambda(c) or (D) over bar*Xi(c), (D) over bar*Lambda(c) appearing in the generation of the strangenessless P-c states, since in the latter case the transition potential between those channels is zero. The extra attraction obtained in the (D) over bar Xi(c), (D) over bar* Xi(c) pairs preclude the association of the P-cs(4338) state coupling mostly to (D) over bar*Xi(c) while the P-cs(4459) is associated to the state found that couples mostly to (D) over bar Xi(c)'. Four more states appear, like in other molecular pictures, and some of the states are degenerate in spin. Counting different spin states we find 10states, which we hope can be observed in the near future.
Address [Feijoo, Albert; Wang, Wen-Fei; Oset, Eulogio; Nieves, Juan] Ctr Mixto Univ Valencia, CSIC Inst Invest Paterna, Dept Fis Teonca, Aptdo 22085, Valencia 46071, Spain, Email: edfeijoo@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes (up) WOS:000991801200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5535
Permanent link to this record
 

 
Author Alvarez, M.; Cantero, J.; Czakon, M.; Llorente, J.; Mitov, A.; Poncelet, R.
Title NNLO QCD corrections to event shapes at the LHC Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 129 - 24pp
Keywords Higher-Order Perturbative Calculations; Specific QCD Phenomenology
Abstract In this work we perform the first ever calculation of jet event shapes at hadron colliders at next-to-next-to leading order (NNLO) in QCD. The inclusion of higher order corrections removes the shape difference observed between data and next-to-leading order predictions. The theory uncertainty at NNLO is comparable to, or slightly larger than, existing measurements. Except for narrow kinematical ranges where all-order resummation becomes important, the NNLO predictions for the event shapes considered in the present work are reliable. As a prime application of the results derived in this work we provide a detailed investigation of the prospects for the precision determination of the strong coupling constant and its running through TeV scales from LHC data.
Address [Czakon, Michal] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany, Email: manuel.alvarez.estevez@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes (up) WOS:000992064600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5560
Permanent link to this record