toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Serenelli, A.; Pena-Garay, C.; Haxton, W.C. url  doi
openurl 
  Title Using the standard solar model to constrain solar composition and nuclear reaction S factors Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 87 Issue 4 Pages 043001 - 9pp  
  Keywords  
  Abstract While standard solar model (SSM) predictions depend on approximately 20 input parameters, SSM neutrino flux predictions are strongly correlated with a single model output parameter, the core temperature T-c. Consequently, one can extract physics from solar neutrino flux measurements while minimizing the consequences of SSM uncertainties, by studying flux ratios with appropriate power-law weightings tuned to cancel this T-c dependence. We reexamine an idea for constraining the primordial C + N content of the solar core from a ratio of CN-cycle O-15 to pp-chain B-8 neutrino fluxes, showing that non-nuclear SSM uncertainties in the ratio are small and effectively governed by a single parameter, the diffusion coefficient. We point out that measurements of both CN-I cycle neutrino branches-O-15 and N-13 beta-decay-could, in principle, lead to separate determinations of the core C and N abundances, due to out-of-equilibrium CN-cycle burning in the cooler outer layers of the solar core. Finally, we show that the strategy of constructing “minimum uncertainty” neutrino flux ratios can also test other properties of the SSM. In particular, we demonstrate that a weighted ratio of Be-7 and B-8 fluxes constrains a product of S-factors to the same precision currently possible with laboratory data.  
  Address [Serenelli, Aldo] CSIC IEEC, Inst Ciencias Espacio, Fac Ciencies, Bellaterra 08193, Spain, Email: aldos@ice.csic.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes (up) WOS:000314685400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1328  
Permanent link to this record
 

 
Author Antonelli, V.; Miramonti, L.; Pena-Garay, C.; Serenelli, A. url  doi
openurl 
  Title Solar Neutrinos Type Journal Article
  Year 2013 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.  
  Volume 2013 Issue Pages 351926 - 34pp  
  Keywords  
  Abstract The study of solar neutrinos has given a fundamental contribution both to astroparticle and to elementary particle physics, offering an ideal test of solar models and offering at the same time relevant indications on the fundamental interactions among particles. After reviewing the striking results of the last two decades, which were determinant to solve the long standing solar neutrino puzzle and refine the Standard Solar Model, we focus our attention on the more recent results in this field and on the experiments presently running or planned for the near future. The main focus at the moment is to improve the knowledge of the mass and mixing pattern and especially to study in detail the lowest energy part of the spectrum, which represents most of the solar neutrino spectrum but is still a partially unexplored realm. We discuss this research project and the way in which present and future experiments could contribute to make the theoretical framework more complete and stable, understanding the origin of some “anomalies” that seem to emerge from the data and contributing to answer some present questions, like the exact mechanism of the vacuum to matter transition and the solution of the so-called solar metallicity problem.  
  Address Univ Milan, Dipartimento Fis, I-20133 Milan, Italy, Email: vito.antonelli@mi.infn.it  
  Corporate Author Thesis  
  Publisher Hindawi Publishing Corporation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1687-7357 ISBN Medium  
  Area Expedition Conference  
  Notes (up) WOS:000316881700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1392  
Permanent link to this record
 

 
Author Villaescusa-Navarro, F.; Bird, S.; Pena-Garay, C.; Viel, M. url  doi
openurl 
  Title Non-linear evolution of the cosmic neutrino background Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 019 - 30pp  
  Keywords cosmological neutrinos; neutrino properties; neutrino masses from cosmology  
  Abstract We investigate the non-linear evolution of the relic cosmic neutrino background by running large box-size, high resolution N-body simulations which incorporate cold dark matter (CDM) and neutrinos as independent particle species. Our set of simulations explore the properties of neutrinos in a reference Lambda CDM model with total neutrino masses between 0.05-0.60 eV in cold dark matter haloes of mass 10(11) – 10(15) h(-1) M-circle dot, over a redshift range z = 0 – 2. We compute the halo mass function and show that it is reasonably well fitted by the Sheth-Tormen formula, once the neutrino contribution to the total matter is removed. More importantly, we focus on the CDM and neutrino properties of the density and peculiar velocity fields in the cosmological volume, inside and in the outskirts of virialized haloes. The dynamical state of the neutrino particles depends strongly on their momentum: whereas neutrinos in the low velocity tail behave similarly to CDM particles, neutrinos in the high velocity tail are not affected by the clustering of the underlying CDM component. We find that the neutrino (linear) unperturbed momentum distribution is modified and mass and redshift dependent deviations from the expected Fermi-Dirac distribution are in place both in the cosmological volume and inside haloes. The neutrino density profiles around virialized haloes have been carefully investigated and a simple fitting formula is provided. The neutrino profile, unlike the cold dark matter one, is found to be cored with core size and central density that depend on the neutrino mass, redshift and mass of the halo, for halos of masses larger than similar to 10(13.5) h(-1) M-circle dot. For lower masses the neutrino profile is best fitted by a simple power-law relation in the range probed by the simulations. The results we obtain are numerically converged in terms of neutrino profiles at the 10% level for scales above similar to 200 h(-1) kpc at z = 0, and are stable with respect to box-size and starting redshift of the simulation. Our findings are particularly important in view of upcoming large-scale structure surveys, like Euclid, that are expected to probe the non-linear regime at the percent level with lensing and clustering observations.  
  Address INAF Osservatorio Astron Trieste, I-34143 Trieste, Italy, Email: villaescusa@oats.inaf.it;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes (up) WOS:000316989200020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1435  
Permanent link to this record
 

 
Author Gomez-Cadenas, J.J.; Martin-Albo, J.; Muñoz Vidal, J.; Pena-Garay, C. url  doi
openurl 
  Title Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale CMB observations Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 043 - 17pp  
  Keywords neutrino masses from cosmology; double beta decay  
  Abstract The South Pole Telescope (SPT) has probed an expanded angular range of the CMB temperature power spectrum. Their recent analysis of the latest cosmological data prefers nonzero neutrino masses, with Sigma m(nu) = (0.32 +/- 0.11) eV. This result, if con firmed by the upcoming Planck data, has deep implications on the discovery of the nature of neutrinos. In particular, the values of the effective neutrino mass m(beta beta) involved in neutrinoless double beta decay (beta beta 0 nu) are severely constrained for both the direct and inverse hierarchy, making a discovery much more likely. In this paper, we focus in xenon-based beta beta 0 nu experiments, on the double grounds of their good performance and the suitability of the technology to large-mass scaling. We show that the current generation, with effective masses in the range of 100 kg and conceivable exposures in the range of 500 kg.year, could already have a sizeable opportunity to observe beta beta 0 nu events, and their combined discovery potential is quite large. The next generation, with an exposure in the range of 10 ton.year, would have a much more enhanced sensitivity, in particular due to the very low specific background that all the xenon technologies (liquid xenon, high-pressure xenon and xenon dissolved in liquid scintillator) can achieve. In addition, a high-pressure xenon gas TPC also features superb energy resolution. We show that such detector can fully explore the range of allowed effective Majorana masses, thus making a discovery very likely.  
  Address CSIC, Inst Fis Corpuscular, IFIC, Valencia 46090, Spain, Email: gomez@mail.cern.ch;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes (up) WOS:000316989200044 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1434  
Permanent link to this record
 

 
Author Borexino Collaboration (Bellini, G. et al); Pena-Garay, C. url  doi
openurl 
  Title Final results of Borexino Phase-I on low-energy solar neutrino spectroscopy Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 89 Issue 11 Pages 112007 - 68pp  
  Keywords  
  Abstract Borexino has been running since May 2007 at the Laboratori Nazionali del Gran Sasso laboratory in Italy with the primary goal of detecting solar neutrinos. The detector a large unsegmented liquid scintillator calorimeter characterized by unprecedented low levels of intrinsic radioactivity is optimized for the study of the lower energy part of the spectrum. During Phase-I (2007-2010) Borexino first detected and then precisely measured the flux of the Be-7 solar neutrinos ruled out any significant day-night asymmetry of their interaction rate made the first direct observation of the pep neutrinos and set the tightest upper limit on the flux of solar neutrinos produced in the CNO cycle (carbon nitrogen oxigen) where carbon nitrogen and oxygen serve as catalysts in the fusion process. In this paper we discuss the signal signature and provide a comprehensive description of the backgrounds quantify their event rates describe the methods for their identification selection or subtraction and describe data analysis. Key features are an extensive in situ calibration program using radioactive sources the detailed modeling of the detector response the ability to define an innermost fiducial volume with extremely low background via software cuts and the excellent pulse-shape discrimination capability of the scintillator that allows particle identification. We report a measurement of the annual modulation of the Be-7 neutrino interaction rate. The period the amplitude and the phase of the observed modulation are consistent with the solar origin of these events and the absence of their annual modulation is rejected with higher than 99% C.L. The physics implications of Phase-I results in the context of the neutrino oscillation physics and solar models are presented.  
  Address [Bellini, G.; Avanzini, M. Buizza; Caccianiga, B.; D'Angelo, D.; Giammarchi, M.; Lombardi, P.; Ludhova, L.; Meroni, E.; Miramonti, L.; Ranucci, G.; Re, A.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes (up) WOS:000338663100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1856  
Permanent link to this record
 

 
Author Dorado-Morales, P.; Vilanova, C.; Pena-Garay, C.; Marti, J.M.; Porcar, M. doi  openurl
  Title Unveiling Bacterial Interactions through Multidimensional Scaling and Dynamics Modeling Type Journal Article
  Year 2015 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 5 Issue Pages 18396 - 6pp  
  Keywords  
  Abstract We propose a new strategy to identify and visualize bacterial consortia by conducting replicated culturing of environmental samples coupled with high-throughput sequencing and multidimensional scaling analysis, followed by identification of bacteria-bacteria correlations and interactions. We conducted a proof of concept assay with pine-tree resin-based media in ten replicates, which allowed detecting and visualizing dynamical bacterial associations in the form of statistically significant and yet biologically relevant bacterial consortia.  
  Address [Dorado-Morales, Pedro; Vilanova, Cristina; Porcar, Manuel] Univ Valencia, Cavanilles Inst Biodivers & Evolutionary Biol, Valencia 46020, Spain, Email: manuel.porcar@uv.es  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes (up) WOS:000366483800002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2483  
Permanent link to this record
 

 
Author Bergstrom, J.; Gonzalez-Garcia, M.C.; Maltoni, M.; Pena-Garay, C.; Serenelli, A.M.; Song, N.Q. url  doi
openurl 
  Title Updated determination of the solar neutrino fluxes from solar neutrino data Type Journal Article
  Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 132 - 19pp  
  Keywords Neutrino Physics; Solar and Atmospheric Neutrinos  
  Abstract We present an update of the determination of the solar neutrino fluxes from a global analysis of the solar and terrestrial neutrino data in the framework of three-neutrino mixing. Using a Bayesian analysis we reconstruct the posterior probability distribution function for the eight normalization parameters of the solar neutrino fluxes plus the relevant masses and mixing, with and without imposing the luminosity constraint. We then use these results to compare the description provided by different Standard Solar Models. Our results show that, at present, both models with low and high metallicity can describe the data with equivalent statistical agreement. We also argue that even with the present experimental precision the solar neutrino data have the potential to improve the accuracy of the solar model predictions.  
  Address [Bergstroem, Johannes; Gonzalez-Garcia, M. C.] Univ Barcelona, Dept Estruct & Constituents Mat, Diagonal 647, E-08028 Barcelona, Spain, Email: bergstrom@ecm.ub.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes (up) WOS:000373050700004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2609  
Permanent link to this record
 

 
Author Serenelli, A.; Scott, P.; Villante, F.L.; Vincent, A.C.; Asplund, M.; Basu, S.; Grevesse, N.; Pena-Garay, C. url  doi
openurl 
  Title Implications of solar wind measurements for solar models and composition Type Journal Article
  Year 2016 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 463 Issue 1 Pages 2-9  
  Keywords neutrinos; Sun: abundances; Sun: helioseismology; Sun: interior  
  Abstract We critically examine recent claims of a high solar metallicity by von Steiger & Zurbuchen (2016, vSZ16) based onin situ measurements of the solar wind, rather than the standard spectroscopically inferred abundances (Asplund et al. 2009, hereafter AGSS09). We test the claim by Vagnozzi et al. (2016) that a composition based on the solar wind enables one to construct a standard solar model in agreement with helioseismological observations and thus solve the decades-old solar modelling problem. We show that, although some helioseismological observables are improved compared to models computed with spectroscopic abundances, most are in fact worse. The high abundance of refractory elements leads to an overproduction of neutrinos, with a predicted B-8 flux that is nearly twice its observed value, and Be-7 and CNO fluxes that are experimentally ruled out at high confidence. A combined likelihood analysis shows that models using the vSZ16 abundances are worse than AGSS09 despite a higher metallicity. We also present astrophysical and spectroscopic arguments showing the vSZ16 composition to be an implausible representation of the solar interior, identifying the first ionization potential effect in the outer solar atmosphere and wind as the likely culprit.  
  Address [Serenelli, Aldo] Inst Space Sci IEEC CSIC, E-08193 Barcelona, Spain, Email: aldos@ice.csic.es  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes (up) WOS:000386464900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2842  
Permanent link to this record
 

 
Author Bellomo, N.; Bellini, E.; Hu, B.; Jimenez, R.; Pena-Garay, C.; Verde, L. url  doi
openurl 
  Title Hiding neutrino mass in modified gravity cosmologies Type Journal Article
  Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 02 Issue 2 Pages 043 - 12pp  
  Keywords cosmological neutrinos; modified gravity; neutrino astronomy; neutrino masses from cosmology  
  Abstract Cosmological observables show a dependence with the neutrino mass, which is partially degenerate with parameters of extended models of gravity. We study and explore this degeneracy in Horndeski generalized scalar-tensor theories of gravity. Using forecasted cosmic microwave background and galaxy power spectrum datasets, we find that a single parameter in the linear regime of the effective theory dominates the correlation with the total neutrino mass. For any given mass, a particular value of this parameter approximately cancels the power suppression due to the neutrino mass at a given redshift. The extent of the cancellation of this degeneracy depends on the cosmological large-scale structure data used at different redshifts. We constrain the parameters and functions of the effective gravity theory and determine the influence of gravity on the determination of the neutrino mass from present and future surveys.  
  Address [Bellomo, Nicola; Bellini, Emilio; Hu, Bin; Jimenez, Raul; Verde, Licia] Univ Barcelona UB IEEC, ICC, Marti & Franques 1, Barcelona 08028, Spain, Email: nicola.bellomo@icc.ub.edu;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes (up) WOS:000399455000043 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3078  
Permanent link to this record
 

 
Author Vinyoles, N.; Serenelli, A.M.; Villante, F.L.; Basu, S.; Bergstrom, J.; Gonzalez-Garcia, M.C.; Maltoni, M.; Pena-Garay, C.; Song, N.Q. url  doi
openurl 
  Title A New Generation of Standard Solar Models Type Journal Article
  Year 2017 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 835 Issue 2 Pages 202 - 16pp  
  Keywords neutrinos; Sun: abundances; Sun: Helioseismology; Sun: interior  
  Abstract We compute a new generation of standard solar models (SSMs) that includes recent updates on some important nuclear reaction rates and a more consistent treatment of the equation of state. Models also include a novel and flexible treatment of opacity uncertainties based on opacity kernels, required in. light of recent theoretical and experimental works on radiative opacity. Two large sets of SSMs, each based on a different canonical set of solar abundances with high and low metallicity (Z), are computed to determine model uncertainties and correlations among different observables. We present detailed comparisons of high-and low-Z models against different ensembles of solar observables,. including solar neutrinos, surface helium abundance, depth of the. convective envelope, and sound speed profile. A global comparison, including all observables, yields a p-value of 2.7 sigma for the high-Z model and 4.7 sigma for the low-Z one. When the sound speed differences in the narrow region of 0.65 < r/R-circle dot < 0.70 are excluded from the analysis, results are 0.9 sigma and 3.0 sigma for high-and low-Z models respectively. These results show that. high-Z models agree well with solar data but have a systematic problem right below the bottom of the convective envelope linked to steepness of molecular weight and temperature gradients, and that low-Z models lead to a much more general disagreement with solar data. We also show that, while simple parametrizations of opacity uncertainties can strongly alleviate the solar abundance problem, they are insufficient to substantially improve the agreement of SSMs with helioseismic data beyond that obtained for high-Z models due to the intrinsic correlations of theoretical predictions.  
  Address [Vinyoles, Nuria; Serenelli, Aldo M.] CSIC IEEC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Barcelona, Spain, Email: vinyoles@ice.csic.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes (up) WOS:000401145700018 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3145  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva