Dudouet, J. et al, Gadea, A., & Perez-Vidal, R. M. (2024). High-resolution spectroscopy of neutron-rich Br isotopes and signatures for a prolate-to-oblate shape transition at N=56. Phys. Rev. C, 110(3), 034304–16pp.
Abstract: The first systematic experimental study of the neutron-rich Br isotopes with two complementary state-ofthe-art techniques is presented. These isotopes were populated in the fission process at two different facilities, GANIL and ILL. New spectroscopic information was obtained for odd-even Br87-93 isotopes and the experimental results were compared with state-of-the-art large scale shell model (LSSM) and discrete nonorthogonal (DNO) shell model calculations. As a result of such theoretical approaches, a transition from prolate (Br-87,Br-89) to oblate (Br-91,Br-93) shapes is obtained from the subtle balance between proton and neutron quadrupole deformations, as a clear signature of a pseudo-SU3 quadrupole regime.
|
IDS Collaboration(Benito, J. et al), & Nacher, E. (2024). Detailed structure of 131Sn populated in the β decay of isomerically purified 131In states. Phys. Rev. C, 110(1), 014328–19pp.
Abstract: The excited structure of the single-hole nucleus 131 Sn populated by the beta – decay of 131 In was investigated in detail at the ISOLDE facility at CERN. This new experiment took advantage of isomeric purification capabilities provided by resonant ionization, making it possible to independently study the decay of each isomer for the first time. The position of the first-excited nu h 11 / 2 neutron-hole state was confirmed via an independent mass spectroscopy experiment performed at the Ion Guide Isotope Separator On-Line facility at the University of Jyv & auml;skyl & auml;. The level scheme of 131 Sn was notably expanded with the addition of 31 new gamma-ray transitions and 22 new excited levels. The gamma-emitting excited levels above the neutron separation energy in 131 Sn were investigated, revealing a large number of states, which in some cases decay by transitions to other neutron-unbound states. Our analysis showed the dependence between the population of these states in 131 Sn and the beta-decaying 131 In state feeding them. Profiting from the isomer selectivity, it was possible to estimate the direct beta feeding to the 3/2+ / 2 + ground and 11/2- / 2 – isomeric states, disentangling the contributions from the three indium parent states. This made possible to resolve the discrepancies in log ft for first-forbidden transitions observed in previous studies, and to determine the beta-delayed neutron decay probability (Pn) P n ) values of each indium isomers independently. The first measurement of subnanosecond lifetimes in 131 Sn was performed in this work. A short T 1 / 2 = 18(4)-ps value was measured for the 1/2+ / 2 + neutron single-hole 332-keV state, which indicates an enhanced l-forbidden M 1 behavior for the nu 3 s – 1 1/2 / 2 -> nu 3 d – 13 / 2 transition. The measured half-lives of high-energy states populated in the beta decay of the (21/2+) / 2 + ) second isomeric state ( 131 m 2 In) provided valuable information on transition rates, supporting the interpretation of these levels as core-excited states analogous to those observed in the doubly-magic 132 Sn.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2024). Measurement of forward charged hadron flow harmonics in peripheral PbPb collisions at √sNN=5.02 TeV with the LHCb detector. Phys. Rev. C, 109(5), 054908–12pp.
Abstract: Flow harmonic coefficients, nu(n), which are the key to studying the hydrodynamics of the quark-gluon plasma (QGP) created in heavy-ion collisions, have been measured in various collision systems and kinematic regions and using various particle species. The study of flow harmonics in a wide pseudorapidity range is particularly valuable to understand the temperature dependence of the shear viscosity to entropy density ratio of the QGP. This paper presents the first LHCb results of the second- and the third-order flow harmonic coefficients of charged hadrons as a function of transverse momentum in the forward region, corresponding to pseudorapidities between 2.0 and 4.9, using the data collected from PbPb collisions in 2018 at a center-of-mass energy of 5.02 TeV. The coefficients measured using the two-particle angular correlation analysis method are smaller than the central-pseudorapidity measurements at ALICE and ATLAS from the same collision system but share similar features.
|
ATLAS Collaboration(Aad, G. et al), Amos, K. R., Aparisi Pozo, J. A., Bailey, A. J., Cabrera Urban, S., Cantero, J., et al. (2023). Measurements of the suppression and correlations of dijets in Xe+Xe collisions at √s NN=5.44 TeV. Phys. Rev. C, 108(2), 024906–25pp.
Abstract: Measurements of the suppression and correlations of dijets is performed using 3 μb(-1) of Xe+Xe data at root sNN = 5.44 TeV collected with the ATLAS detector at the CERN Large Hadron Collider. Dijets with jets reconstructed using the R = 0.4 anti-kt algorithm are measured differentially in jet p(T) over the range of 32 to 398 GeV and the centrality of the collisions. Significant dijet momentum imbalance is found in the most central Xe+Xe collisions, which decreases in more peripheral collisions. Results from the measurement of per-pair normalized and absolutely normalized dijet p(T) balance are compared with previous Pb+Pb measurements at root sNN = 5.02 TeV. The differences between the dijet suppression in Xe+Xe and Pb+Pb are further quantified by the ratio of pair nuclear-modification factors. The results are found to be consistent with those measured in Pb+Pb data when compared in classes of the same event activity and when taking into account the difference between the center-of-mass energies of the initial parton scattering process in Xe+Xe and Pb+Pb collisions. These results should provide input for a better understanding of the role of energy density, system size, path length, and fluctuations in the parton energy loss.
|
IDS Collaboration(Andel, B. et al), Algora, A., & Nacher, E. (2024). β decay of the ground state and of a low-lying isomer in Bi-216. Phys. Rev. C, 109(6), 064321–18pp.
Abstract: A detailed beta -decay study of the low- and high -spin states in 216 Bi has been performed at the ISOLDE Decay Station at the CERN-ISOLDE facility. In total, 48 new levels and 83 new transitions in the beta -decay daughter 216 Po were identified. Shell -model calculations for excited states in 216 Bi and 216 Po were performed using the H208 and the modified Kuo-Herling particle effective interactions. Based on the experimental observations and the shell -model calculations, the most likely spin and parity assignments for the beta -decaying states in 216 Bi are (3 – ) and (8 – ), respectively.
|