|   | 
Details
   web
Records
Author Raj, N.; Takhistov, V.; Witte, S.J.
Title Presupernova neutrinos in large dark matter direct detection experiments Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 4 Pages 043008 - 10pp
Keywords
Abstract The next Galactic core-collapse supernova (SN) is a highly anticipated observational target for neutrino telescopes. However, even prior to collapse, massive dying stars shine copiously in “pre-supernova” (pre-SN) neutrinos, which can potentially act as efficient SN warning alarms and provide novel information about the very last stages of stellar evolution. We explore the sensitivity to pre-SN neutrinos of large-scale direct dark matter detection experiments, which, unlike dedicated neutrino telescopes, take full advantage of coherent neutrino-nucleus scattering. We find that argon-based detectors with target masses of O(100)tons (i.e., comparable in size to the proposed ARGO experiment) operating at sub-keV thresholds can detect O(10-100) pre-SN neutrinos coming from a source at a characteristic distance of similar to 200 pc, such as Betelgeuse (alpha Orionis). Large-scale xenon-based experiments with similarly low thresholds could also be sensitive to pre-SN neutrinos. For a Betelgeuse-type source, large-scale dark matter experiments could provide a SN warning siren similar to 10 hours prior to the explosion. We also comment on the complementarity of large-scale direct dark matter detection experiments and neutrino telescopes in the understanding of core-collapse SN.
Address [Raj, Nirmal] TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada, Email: nraj@triumf.ca;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes (down) WOS:000513575900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4285
Permanent link to this record
 

 
Author Blanco, C.; Escudero, M.; Hooper, D.; Witte, S.J.
Title Z ' mediated WIMPs: dead, dying, or soon to be detected? Type Journal Article
Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 024 - 48pp
Keywords dark matter theory; dark matter detectors; dark matter experiments
Abstract Although weakly interacting massive particles (WIMPs) have long been among the most studied and theoretically attractive classes of candidates for the dark matter of our universe, the lack of their detection in direct detection and collider experiments has begun to dampen enthusiasm for this paradigm. In this study, we set out to appraise the status of the WIMP paradigm, focusing on the case of dark matter candidates that interact with the Standard Model through a new gauge boson. After considering a wide range of Z' mediated dark matter models, we quantitatively evaluate the fraction of the parameter space that has been excluded by existing experiments, and that is projected to fall within the reach of future direct detection experiments. Despite the existence of stringent constraints, we find that a sizable fraction of this parameter space remains viable. More specifically, if the dark matter is a Majorana fermion, we find that an order one fraction of the parameter space is in many cases untested by current experiments. Future direct detection experiments with sensitivity near the irreducible neutrino floor will be able to test a significant fraction of the currently viable parameter space, providing considerable motivation for the next generation of direct detection experiments.
Address [Blanco, Carlos] Univ Chicago, Dept Phys, Chicago, IL 60637 USA, Email: carlosblanco2718@uchicago.ed;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes (down) WOS:000507259700021 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4255
Permanent link to this record
 

 
Author Mena, O.; Palomares-Ruiz, S.; Villanueva-Domingo, P.; Witte, S.J.
Title Constraining the primordial black hole abundance with 21-cm cosmology Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 4 Pages 043540 - 23pp
Keywords
Abstract The discoveries of a number of binary black hole mergers by LIGO and VIRGO have reinvigorated the interest that primordial black holes (PBHs) of tens of solar masses could contribute non-negligibly to the dark matter energy density. Should even a small population of PBHs with masses greater than or similar to O(M-circle dot) exist, they could profoundly impact the properties of the intergalactic medium and provide insight into novel processes at work in the early Universe. We demonstrate here that observations of the 21-cm transition in neutral hydrogen during the epochs of reionization and cosmic dawn will likely provide one of the most stringent tests of solar mass PBHs. In the context of 21-cm cosmology, PBHs give rise to three distinct observable effects: (i) the modification to the primordial power spectrum (and thus also the halo mass function) induced by Poisson noise, (ii) a uniform heating and ionization of the intergalactic medium via x-rays produced during accretion, and (iii) a local modification to the temperature and density of the ambient medium surrounding isolated PBHs. Using a four-parameter astrophysical model, we show that experiments like SKA and HERA could potentially improve upon existing constraints derived using observations of the cosmic microwave background by more than 1 order of magnitude.
Address [Mena, Olga; Palomares-Ruiz, Sergio; Villanueva-Domingo, Pablo; Witte, Samuel J.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes (down) WOS:000483047300003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4122
Permanent link to this record
 

 
Author Gelmini, G.B.; Takhistov, V.; Witte, S.J.
Title Geoneutrinos in large direct detection experiments Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 99 Issue 9 Pages 093009 - 11pp
Keywords
Abstract Geoneutrinos can provide a unique insight into Earth's interior, its central engine, and its formation history. We study the detection of geoneutrinos in large direct detection experiments, which has been considered nonfeasible. We compute the geoneutrino-induced electron and nuclear recoil spectra in different materials, under several optimistic assumptions. We identify germanium as the most promising target element due to the low nuclear recoil energy threshold that could be achieved. The minimum exposure required for detection would be O(10) ton-years. The realistic low thresholds achievable in germanium and silicon permit the detection of K-40 geoneutrinos. These are particularly important to determining Earth's formation history, but they are below the kinematic threshold of inverse beta decay, the detection process used in scintillator-based experiments.
Address [Gelmini, Graciela B.; Takhistov, Volodymyr] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA, Email: gelmini@physics.ucla.edu;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes (down) WOS:000469022000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4024
Permanent link to this record
 

 
Author Caputo, A.; Regis, M.; Taoso, M.; Witte, S.J.
Title Detecting the stimulated decay of axions at radio frequencies Type Journal Article
Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 027 - 22pp
Keywords axions; dark matter theory; dark matter detectors; dwarfs galaxies
Abstract Assuming axion-like particles account for the entirety of the dark matter in the Universe, we study the possibility of detecting their decay into photons at radio frequencies. We discuss different astrophysical targets, such as dwarf spheroidal galaxies, the Galactic Center and halo, and galaxy clusters. The presence of an ambient radiation field leads to a stimulated enhancement of the decay rate; depending on the environment and the mass of the axion, the effect of stimulated emission may amplify the photon flux by serval orders of magnitude. For axion-photon couplings allowed by astrophysical and laboratory constraints (and possibly favored by stellar cooling), we find the signal to be within the reach of next-generation radio telescopes such as the Square Kilometer Array.
Address [Caputo, Andrea; Witte, Samuel J.] Univ Valencia, CSIC, Inst Fis Corpuscular, Apartado Correos 22085, E-46071 Valencia, Spain, Email: andrea0292@hotmail.it;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes (down) WOS:000461450100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3944
Permanent link to this record