toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Montesinos, V.; Albaladejo, M.; Nieves, J.; Tolos, L. url  doi
openurl 
  Title Charge-conjugation asymmetry and molecular content: The Ds0*(2317)± in matter Type Journal Article
  Year 2024 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 853 Issue Pages 138656 - 10pp  
  Keywords  
  Abstract We analyze the modifications that a dense nuclear medium induces in the D-s0*(2317)(+/-) and D-s1(2460)(+/-). In the vacuum, we consider them as isoscalar D-(*K-) and (D) over bar (()*())(K) over bar S-wave bound states, which are dynamically generated from effective interactions that lead to different Weinberg compositeness scenarios. Matter effects are incorporated through the two-meson loop functions, taking into account the self energies that the D-(*()), (D) over bar (()*()), K, and (K) over bar develop when embedded in a nuclear medium. Although particle-antiparticle [D-s0,s1(()*())(2317,2460)(+) versus D-s0,s1(()*())(2317,2460)(-)] lineshapes are the same in vacuum, we find extremely different density patterns in matter. This charge-conjugation asymmetry mainly stems from the very different kaon and antikaon interaction with the nucleons of the dense medium. We show that the in-medium lineshapes found for these resonances strongly depend on their D-(*()), K/(D) over bar (()*()), K molecular content, and discuss how this novel feature can be used to better determine/constrain the inner structure of these exotic states.  
  Address [Montesinos, V.; Albaladejo, M.; Nieves, J.] UV, Inst Fis Corpuscular, Inst Invest Paterna, Ctr Mixto,CSIC, C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: Victor.Montesinos@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001218202500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6137  
Permanent link to this record
 

 
Author Penalva, N.; Flynn, J.M.; Hernandez, E.; Nieves, J. url  doi
openurl 
  Title Study of new physics effects in (B)over-bars → Ds(*) τ-(ν)over-bar τ semileptonic decays using lattice QCD form factors and heavy quark effective theory Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue 1 Pages 163 - 33pp  
  Keywords Effective Field Theories of QCD; Flavour Symmetries; Semi-Leptonic Decays; SMEFT  
  Abstract We benefit from the lattice QCD determination by the HPQCD of the Standard Model (SM) form factors for the (B) over bar (s) -> D-s [Phys. Rev. D101(2020) 074513] and the SM and tensor ones for the (B) over bar (s) -> D-s* (arXiv:2304.03137[hep-lat]) semileptonic decays, and the heavy quark effective theory (HQET) relations for the analogous B -> D-(*()) decays obtained by F.U. Bernlochner et al. in Phys. Rev. D95(2017) 115008, to extract the leading and sub-leading Isgur-Wise functions for the (B) over bar (s) -> D-s(()*()) decays. Further use of the HQET relations allows us to evaluate the corresponding scalar, pseudoscalar and tensor form factors needed for a phenomenological study of new physics (NP) effects on the (B) over bar (s) -> D-s(()*()) semileptonic decay. At present, the experimental values for the ratios R-D(*) = Gamma[ (B) over bar -> D-(*())(tau- (nu) over bar tau)]/Gamma[(B) over bar -> D-(*())e(-)(mu(-)) (nu) over bar (e(mu))]are the best signal in favor of lepton flavor universality violation (LFUV) seen in charged current (CC) b -> c decays. In this work we conduct a study of NP effects on the (B) over bar (s) -> D-s(()*()) tau(-)(tau) semileptonic decays by comparing tau spin, angular and spin-angular asymmetry distributions obtained within the SM and three different NP scenarios. As expected from SU(3) light-flavor symmetry, we get results close to the ones found in a similar analysis of the (B) over bar -> D-(*()) case. The measurement of the (B) over bar (s) -> D-s(()*())(l (nu) over bar tau) semileptonic decays, which is within reach of present experiments, could then be of relevance in helping to establish or rule out LFUV in CC b -> c transitions.  
  Address [Penalva, Neus; Nieves, Juan] Ctr Mixto CSIC UV, Inst Fis Corpuscular, Inst Invest Paterna, C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: neus.penalva@icc.ub.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001152794800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5922  
Permanent link to this record
 

 
Author Vidaña, I.; Feijoo, A.; Albaladejo, M.; Nieves, J.; Oset, E. url  doi
openurl 
  Title Femtoscopic correlation function for the Tcc(3875)+ state Type Journal Article
  Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 846 Issue Pages 138201 - 9pp  
  Keywords Femtoscopy; Tcc  
  Abstract We have conducted a study of the femtoscopic correlation functions for the D0D*+ and D+D*0 channels that build the Tcc state. We develop a formalism that allows us to factorize the scattering amplitudes outside the integrals in the formulas, and the integrals involve the range of the strong interaction explicitly. For a source of size of 1 fm, we find values for the correlation functions of the D0D*+ and D+D*0 channels at the origin around 30 and 2.5, respectively, and we see these observables converging to unity already for relative momenta of the order of 200 MeV. We conduct tests to see the relevance of the different contributions to the correlation function and find that it mostly provides information on the scattering length, but should the correlation functions be measured with the precision of the latest experiments, the effective range of the D0D*+ could also be obtained.  
  Address [Vidana, I.] Univ Catania, Ist Nazl Fis Nucl, Dipartimento Fis Ettore Majorana, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: isaac.vidana@ct.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001092697200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5777  
Permanent link to this record
 

 
Author Montesinos, V.; Albaladejo, M.; Nieves, J.; Tolos, L. url  doi
openurl 
  Title Properties of the Tcc(3875)+ and Tcbar,cbar(3875)- and their heavy-quark spin partners in nuclear matter Type Journal Article
  Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 108 Issue 3 Pages 035205 - 15pp  
  Keywords  
  Abstract We discuss the modification of the properties of the tetraquark-like Tcc(3875)+ and Tc over bar c over bar (3875)- states in dense nuclear matter. We consider the Tcc+ and Tc over bar c over bar – in vacuum as purely isoscalar D*D and D*D S-wave bound states, respectively, dynamically generated from a heavy-quark effective interaction between the charmed mesons. We compute the D, D, D*, and D* spectral functions embedded in a nuclear medium and use them to determine the corresponding Tcc+ and Tc over bar c over bar – self-energies and spectral functions. We find important modifications of the D*D and D*D scattering amplitudes and of the pole position of these exotic states already for p0/2, with p0 the normal nuclear density. We also discuss the dependence of these results on the D*D (D*D) molecular component in the Tcc+ (Tc over bar c- over bar ) wave function. Owing to the different nature of the D(*)N and D(*)N interactions, we find characteristic changes of the in-medium properties of the Tcc(3875)+ and Tc over bar c over bar (3875)-, which become increasingly visible as the density increases. The experimental confirmation of the found distinctive density pattern will give support to the existence of molecular components in these tetraquark-like states, since in the case they were mostly colorless compact quark structures (cct over bar t over bar and c over bar c over bar tt, with t = u, d), the density behaviors of the Tcc(3875)+ and Tc over bar c over bar (3875)- nuclear medium spectral functions, though different, would not likely be the same as those found in this work for molecular scenarios. Finally, we perform similar analyses for the isoscalar JP = 1+ heavy-quark spin symmetry partners of the Tcc+ (T cc *+ ) and the T c over bar c- over bar (T*- c over bar c over bar ) by considering the D*0D*+ and D*0D*- scattering T matrices.  
  Address [Montesinos, V.; Albaladejo, M.; Nieves, J.] Ctr Mixto CSIC UV, Inst Fis Corpuscular, Inst Invest Paterna, C-Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: Victor.Montesinos@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001080598700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5705  
Permanent link to this record
 

 
Author Feijoo, A.; Wang, W.F.; Xiao, C.W.; Wu, J.J.; Oset, E.; Nieves, J.; Zou, B.S. url  doi
openurl 
  Title A new look at the P-cs states from a molecular perspective Type Journal Article
  Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 839 Issue Pages 137760 - 7pp  
  Keywords  
  Abstract We have a look at the P-cs states generated from the interaction of (D) over bar(*)Xi(c)('*) coupled channels. We consider the blocks of pseudoscalar-baryon (1/2(+) , 3/2(+)) and vector-baryon (1/2(+), 3/2(+)), and find 10 resonant states coupling mostly to (D) over bar Xi(c), <(D)*over bar>*Xi(c), (D) over bar Xi(c)' <(DA novel aspect of the work is the realization that the <(Dover bar>Xi(c), (Dover bar>(s) Lambda(c) or (Dover bar>*Xi(c), D-s*Lambda(c) channels, with a strong transition potential, collaborate to produce a larger attraction than the corresponding states <(Dover bar>Xi(c), <(Dover bar>Lambda(c) or (D) over bar*Xi(c), (D) over bar*Lambda(c) appearing in the generation of the strangenessless P-c states, since in the latter case the transition potential between those channels is zero. The extra attraction obtained in the (D) over bar Xi(c), (D) over bar* Xi(c) pairs preclude the association of the P-cs(4338) state coupling mostly to (D) over bar*Xi(c) while the P-cs(4459) is associated to the state found that couples mostly to (D) over bar Xi(c)'. Four more states appear, like in other molecular pictures, and some of the states are degenerate in spin. Counting different spin states we find 10states, which we hope can be observed in the near future.  
  Address [Feijoo, Albert; Wang, Wen-Fei; Oset, Eulogio; Nieves, Juan] Ctr Mixto Univ Valencia, CSIC Inst Invest Paterna, Dept Fis Teonca, Aptdo 22085, Valencia 46071, Spain, Email: edfeijoo@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:000991801200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5535  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva