toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bhattacharya, S.; Mondal, N.; Roshan, R.; Vatsyayan, D. url  doi
openurl 
  Title Leptogenesis, dark matter and gravitational waves from discrete symmetry breaking Type Journal Article
  Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 06 Issue 6 Pages 029 - 25pp  
  Keywords leptogenesis; dark matter theory; gravitational waves / theory  
  Abstract We analyse a model that connects the neutrino sector and the dark sector of the universe via a mediator 41., stabilised by a discrete Z4 symmetry that breaks to a remnant Z2 upon 41. acquiring a non -zero vacuum expectation value (v phi). The model accounts for the observed baryon asymmetry of the universe via additional contributions to the canonical Type -I leptogenesis. The Z4 symmetry breaking scale (v phi) in the model not only establishes a connection between the neutrino sector and the dark sector, but could also lead to gravitational wave signals that are within the reach of current and future experimental sensitivities.  
  Address [Bhattacharya, Subhaditya; Mondal, Niloy] Indian Inst Technol Guwahati, Dept Phys, Gauhati 781039, Assam, India, Email: subhab@iitg.ac.in;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001246744300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6162  
Permanent link to this record
 

 
Author Alvarado, F.; An, D.; Alvarez-Ruso, L.; Leupold, S. url  doi
openurl 
  Title Light quark mass dependence of nucleon electromagnetic form factors in dispersively modified chiral perturbation theory Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue 11 Pages 114021 - 23pp  
  Keywords  
  Abstract The nucleon isovector electromagnetic form factors are calculated up to next-to-next-to-leading order by combining relativistic chiral perturbation theory (ChPT) of pion, nucleon, and Delta o1232 thorn with dispersion theory. We specifically address the light-quark mass dependence of the form factors, achieving a good description of recent lattice QCD results over a range of Q2 less than or similar to 0.6 GeV2 and M pi less than or similar to 350 MeV. For the Dirac form factor, the combination of ChPT and dispersion theory outperforms the pure dispersive and pure ChPT descriptions. For the Pauli form factor, the combined calculation leads to results comparable to the purely dispersive ones. The anomalous magnetic moment and the Dirac and Pauli radii are extracted.  
  Address [Alvarado, Fernando; Alvarez-Ruso, Luis] CSIC, Inst Fis Corpuscular IF, E-46980 Paterna, Valencia, Spain, Email: Fernando.Alvarado@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001138524400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5906  
Permanent link to this record
 

 
Author Perez Adan, D.; Bahl, H.; Grohsjean, A.; Martin Lozano, V.; Schwanenberger, C.; Weiglein, G. url  doi
openurl 
  Title A new LHC search for dark matter produced via heavy Higgs bosons using simplified models Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 151 - 27pp  
  Keywords Dark Matter at Colliders; Specific BSM Phenomenology  
  Abstract Searches for dark matter produced via scalar resonances in final states consisting of Standard Model (SM) particles and missing transverse momentum are of high relevance at the LHC. Motivated by dark-matter portal models, most existing searches are optimized for unbalanced decay topologies for which the missing momentum recoils against the visible SM particles. In this work, we show that existing searches are also sensitive to a wider class of models, which we characterize by a recently presented simplified model framework. We point out that searches for models with a balanced decay topology can be further improved with more dedicated analysis strategies. For this study, we investigate the feasibility of a new search for bottom-quark associated neutral Higgs production with a b (b) over barZ + p(T)(miss) final state and perform a detailed collider analysis. Our projected results in the different simplified model topologies investigated here can be easily reinterpreted in a wide range of models of physics beyond the SM, which we explicitly demonstrate for the example of the Two-Higgs-Doublet model with an additional pseudoscalar Higgs boson.  
  Address [Adan, Danyer Perez; Schwanenberger, Christian; Weiglein, Georg] Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany, Email: danyer.perez.adan@desy.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001073505200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5702  
Permanent link to this record
 

 
Author Villanueva-Domingo, P.; Villaescusa-Navarro, F.; Genel, S.; Angles-Alcazar, D.; Hernquist, L.; Marinacci, F.; Spergel, D.N.; Vogelsberger, M.; Narayanan, D. url  doi
openurl 
  Title Weighing the Milky Way and Andromeda galaxies with artificial intelligence Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 107 Issue 10 Pages 103003 - 8pp  
  Keywords  
  Abstract We present new constraints on the masses of the halos hosting the Milky Way and Andromeda galaxies derived using graph neural networks. Our models, trained on 2,000 state-of-the-art hydrodynamic simulations of the CAMELS project, only make use of the positions, velocities and stellar masses of the galaxies belonging to the halos, and are able to perform likelihood-free inference on halo masses while accounting for both cosmological and astrophysical uncertainties. Our constraints are in agreement with estimates from other traditional methods, within our derived posterior standard deviation.  
  Address [Villanueva-Domingo, Pablo; Narayanan, Desika] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46980 Paterna, Spain, Email: pablo.villanueva.domingo@gmail.com;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:000988340900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5539  
Permanent link to this record
 

 
Author Herrero-Garcia, J.; Landini, G.; Vatsyayan, D. url  doi
openurl 
  Title Asymmetries in extended dark sectors: a cogenesis scenario Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 049 - 41pp  
  Keywords Models for Dark Matter; Particle Nature of Dark Matter  
  Abstract The observed dark matter relic abundance may be explained by different mechanisms, such as thermal freeze-out/freeze-in, with one or more symmetric/asymmetric components. In this work we investigate the role played by asymmetries in determining the yield and nature of dark matter in non-minimal scenarios with more than one dark matter particle. In particular, we show that the energy density of a particle may come from an asymmetry, even if the particle is asymptotically symmetric by nature. To illustrate the different effects of asymmetries, we adopt a model with two dark matter components. We embed it in a multi-component cogenesis scenario that is also able to reproduce neutrino masses and the baryon asymmetry. In some cases, the model predicts an interesting monochromatic neutrino line that may be searched for at neutrino telescopes.  
  Address [Herrero-Garcia, Juan] Univ Valencia, Dept Fis Teor, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: juan.herrero@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:000988319500002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5550  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva