toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author HAWC Collaboration (Abeysekara, A.U. et al); Salesa Greus, F. url  doi
openurl 
  Title HAWC observations of the acceleration of very-high-energy cosmic rays in the Cygnus Cocoon Type Journal Article
  Year 2021 Publication Nature Astronomy Abbreviated Journal Nat. Astron.  
  Volume 4 Issue Pages 465–471  
  Keywords  
  Abstract Cosmic rays with energies up to a few PeV are known to be accelerated within the Milky Way(1,2). Traditionally, it has been presumed that supernova remnants were the main source of these very-high-energy cosmic rays(3,4), but theoretically it is difficult to accelerate protons to PeV energies(5,6) and observationally there simply is no evidence of the remnants being sources of hadrons with energies above a few tens of TeV7,8. One possible source of protons with those energies is the Galactic Centre region(9). Here, we report observations of 1-100 TeV gamma rays coming from the 'Cygnus Cocoon'(10), which is a superbubble that surrounds a region of massive star formation. These gamma rays are likely produced by 10-1,000 TeV freshly accelerated cosmic rays that originate from the enclosed star-forming region Cyg OB2. Until now it was not known that such regions could accelerate particles to these energies. The measured flux likely originates from hadronic interactions. The spectral shape and the emission profile of the Cocoon changes from GeV to TeV energies, which reveals the transport of cosmic particles and historical activity in the superbubble.  
  Address [Abeysekara, A. U.; Hona, B.; Kieda, D.; Newbold, M.; Springer, R. W.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA, Email: rdb3@stanford.edu;  
  Corporate Author Thesis  
  Publisher Nature Research Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-3366 ISBN Medium (up)  
  Area Expedition Conference  
  Notes WOS:000627714400002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4763  
Permanent link to this record
 

 
Author Qin, W.; Dai, L.Y.; Portoles, J. url  doi
openurl 
  Title Two and three pseudoscalar production in e(+)e(-) annihilation and their contributions to (g-2)(mu) Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 092 - 38pp  
  Keywords Phenomenological Models; QCD Phenomenology  
  Abstract A coherent study of e(+)e(-) annihilation into two (pi(+)pi(-), K+K-) and three (pi(+)pi(-)pi(0), pi(+)pi(-)eta) pseudoscalar meson production is carried out within the framework of resonance chiral theory in energy region E less than or similar to 2 GeV. The work of [L.Y. Dai, J. Portoles, and O. Shekhovtsova, Phys. Rev. D88 (2013) 056001] is revisited with the latest experimental data and a joint analysis of two pseudoscalar meson production. Hence, we evaluate the lowest order hadronic vacuum polarization contributions of those two and three pseudoscalar processes to the anomalous magnetic moment of the muon. We also estimate some higher-order additions led by the same hadronic vacuum polarization. Combined with the other contributions from the standard model, the theoretical prediction differs still by (21.6 +/- 7.4) x 10(-10) (2.9 sigma) from the experimental value.  
  Address [Qin, Wen; Dai, Ling-Yun] Hunan Univ, Sch Phys & Elect, Changsha 410082, Peoples R China, Email: wqin@hnu.edu.cn;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium (up)  
  Area Expedition Conference  
  Notes WOS:000627781500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4764  
Permanent link to this record
 

 
Author Gombas, J.; DeYoung, P.A.; Spyrou, A.; Dombos, A.C.; Algora, A.; Baumann, T.; Crider, B.; Engel, J.; Ginter, T.; Kwan, E.; Liddick, S.N.; Lyons, S.; Naqvi, F.; Ney, E.M.; Pereira, J.; Prokop, C.; Ong, W.; Quinn, S.; Scriven, D.P.; Simon, A.; Sumithrarachchi, C. doi  openurl
  Title beta-decay feeding intensity distributions for Nb-103,Nb-104m Type Journal Article
  Year 2021 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 103 Issue 3 Pages 035803 - 8pp  
  Keywords  
  Abstract The beta decays of Nb-103,Nb-104m were studied with the Summing NaI(Tl) (SuN) detector at the National Superconducting Cyclotron Laboratory. The beta-decay feeding intensity distribution I-beta(E) for each isotope was extracted by measuring gamma rays in coincidence with an emitted electron. The I-beta(E) was extracted via the total absorption spectroscopy technique. The I-beta(E) for each nucleus was compared to predictions made by the quasiparticle random-phase approximation (QRPA) model which is commonly used to calculate beta-decay properties for astrophysical applications. The main goal was to provide experimental data for neutron-rich nuclei, relevant to the astrophysical r process. In addition, the extracted beta-decay feeding intensity distributions can lead to a better understanding of nuclear structure in a region of rapid structure changes around A = 100. Finally, experimental data for Nb-104m are also of interest to antineutrino studies of nuclear reactors.  
  Address [Gombas, J.; DeYoung, P. A.] Hope Coll, Dept Phys, Holland, MI 49422 USA, Email: gombasja@msu.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium (up)  
  Area Expedition Conference  
  Notes WOS:000627565600005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4765  
Permanent link to this record
 

 
Author Barducci, D.; Bertuzzo, E.; Caputo, A.; Hernandez, P.; Mele, B. url  doi
openurl 
  Title The see-saw portal at future Higgs Factories Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 117 - 32pp  
  Keywords Beyond Standard Model; Higgs Physics; Neutrino Physics  
  Abstract We consider an extension of the Standard Model with two right-handed singlet fermions with mass at the electroweak scale that induce neutrino masses, plus a generic new physics sector at a higher scale Lambda. We focus on the effective operators of lowest dimension d = 5, which induce new production and decay modes for the singlet fermions. We assess the sensitivity of future Higgs Factories, such as FCC-ee, CLIC-380, ILC and CEPC, to the coefficients of these operators for various center of mass energies. We show that future lepton colliders can test the cut-off of the theory up to Lambda similar or equal to 500-1000 TeV, surpassing the reach of future indirect measurements of the Higgs and Z boson widths. We also comment on the possibility of determining the underlying model flavor structure should a New Physics signal be observed, and on the impact of higher dimensional d = 6 operators on the experimental signatures.  
  Address [Barducci, Daniele] Univ Roma Sapienza, Piazzale Aldo Moro 5, I-00185 Rome, Italy, Email: daniele.barducci@roma1.infn.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium (up)  
  Area Expedition Conference  
  Notes WOS:000629645800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4766  
Permanent link to this record
 

 
Author Folgado, M.G.; Donini, A.; Rius, N. url  doi
openurl 
  Title Spin-dependence of gravity-mediated dark matter in warped extra-dimensions Type Journal Article
  Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 81 Issue 3 Pages 197 - 13pp  
  Keywords  
  Abstract We study the possibility that Dark Matter (DM) particles of spin 0, 1/2 or 1 may interact gravitationally with Standard Model (SM) particles within the framework of a warped Randall-Sundrum (RS) model. Both the Dark Matter and the Standard Model particles are assumed to be confined to the infra-red (IR) brane and only interchange Kaluza-Klein excitations of the graviton and the radion (adopting the Goldberger-Wise mechanism to stabilize the size of the extra-dimension). We analyze the different DM annihilation channels and find that the presently observed Dark Matter relic abundance, Omega DM, can be obtained within the freeze-out mechanism for DM particles of all considered spins. This extends our first work concerning scalar DM in RS scenarios (Folgado et al., in JHEP 01:161. https://doi.org/10.1007/JHEP01(2020)161, 2020) and put it on equal footing with our second work in which we studied DM particles of spin 0, 1/2 and 1 in the framework of the Clockwork/Linear Dilaton (CW/LD) model (Folgado et al., in JHEP 20:036. https://doi.org/10.1007/JHEP04(2020)036, 2020). We study the region of the model parameter space for which Omega DM is achieved and compare it with the different experimental and theoretical bounds. We find that, for DM particles mass mDM is an element of [1,15] TeV, most of the parameter space is excluded by the current constraints or will be excluded by the LHC Run III or by the LHC upgrade, the HL-LHC. The observed DM relic abundance can still be achieved for DM masses mDM is an element of [4,15] TeV and mG1<10 TeV for scalar and vector boson Dark Matter. On the other hand, for spin 1/2 fermion Dark Matter, only a tiny region with mDM<is an element of>[4,15] TeV, mG1 is an element of [5,10] TeV and Lambda >mG1 is compatible with theoretical and experimental bounds. We have also studied the impact of the radion in the phenomenology, finding that it does not modify significantly the allowed region for DM particles of any spin (differently from the CW/LD case, where its impact was quite significant in the case of scalar DM). We, eventually, briefly compare results in RS with those obtained in the CW/LD model.  
  Address [Folgado, Miguel G.] Univ Valencia, CSIC, Dept Fis Teor, C Catedratico Jose Beltran 2, Paterna 46980, Spain, Email: migarfol@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium (up)  
  Area Expedition Conference  
  Notes WOS:000625431000001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4767  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva