|   | 
Details
   web
Records
Author BABAR Collaboration (Lees, J.P. et al); Martinez-Vidal, F.; Oyanguren, A.
Title Search for Hadronic Decays of a Light Higgs Boson in the Radiative Decay Gamma -> gamma A(0) Type Journal Article
Year 2011 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 107 Issue 22 Pages 221803 - 7pp
Keywords
Abstract We search for hadronic decays of a light Higgs boson (A(0)) produced in radiative decays of an Gamma(2S) or Gamma(3S) meson, Gamma -> gamma A(0). The data have been recorded by the BABAR experiment at the Gamma(3S) and Gamma(2S) center-of-mass energies and include (121.3 +/- 1.2) x 10(6) Gamma(3S) and (98.3 +/- 0.9) x 10(6) Gamma(2S) mesons. No significant signal is observed. We set 90% confidence level upper limits on the product branching fractions B(Gamma(nS) -> gamma A(0))B(A(0) -> hadrons) (n = 2 or 3) that range from 1 x 10(-6) for an A(0) mass of 0: 3 GeV/c(2) to 8 x 10(-5) at 7 GeV/c(2).
Address [Lees, J. P.; Poireau, V.; Tisserand, V.] Univ Savoie, LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000297292000004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 827
Permanent link to this record
 

 
Author Botella, F.J.; Branco, G.C.; Nebot, M.; Rebelo, M.N.
Title Two-Higgs leptonic minimal flavour violation Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 037 - 21pp
Keywords Higgs Physics; Beyond Standard Model; Neutrino Physics
Abstract We construct extensions of the Standard Model with two Higgs doublets, where there are flavour changing neutral currents both in the quark and leptonic sectors, with their strength fixed by the fermion mixing matrices V(CKM) and V(PMNS). These models are an extension to the leptonic sector of the class of models previously considered by Branco, Grimus and Lavoura, for the quark sector. We consider both the cases of Dirac and Majorana neutrinos and identify the minimal discrete symmetry required in order to implement the models in a natural way.
Address [Botella, F. J.; Nebot, M.] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: fbotella@uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000296917100037 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 830
Permanent link to this record
 

 
Author Fidalgo, J.; Lopez-Fogliani, D.E.; Muñoz, C.; Ruiz de Austri, R.
Title The Higgs sector of the μnu SSM and collider physics Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 020 - 33pp
Keywords Higgs Physics; Supersymmetric Effective Theories; Beyond Standard Model
Abstract The μnu SSM is a supersymmetric standard model that accounts for light neutrino masses and solves the μproblem of the MSSM by simply using right-handed neutrino superfields. Since this mechanism breaks R-parity, a peculiar structure for the mass matrices is generated. The neutral Higgses are mixed with the right- and left-handed sneutrinos producing 8x8 neutral scalar mass matrices. We analyse the Higgs sector of the μnu SSM in detail, with special emphasis in possible signals at colliders. After studying in general the decays of the Higges, we focus on those processes that are genuine of the μnu SSM, and could serve to distinguish it form other supersymmetric models. In particular, we present viable benchmark points for LHC searches. For example, we find decays of a MSSM-like Higgs into two lightest neutralinos, with the latter decaying inside the detector leading to displaced vertices, and producing final states with 4 and 8 b-jets plus missing energy. Final states with leptons and missing energy are also found.
Address [Fidalgo, Javier; Munoz, Carlos] Univ Autonoma Madrid, Dept Fis Teor UAM, E-28049 Madrid, Spain, Email: javier.fidalgo@uam.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000296917100020 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 831
Permanent link to this record
 

 
Author T2K Collaboration (Abe, K. et al); Cervera-Villanueva, A.; Escudero, L.; Gomez-Cadenas, J.J.; Hansen, C.; Monfregola, L.; Sorel, M.; Stamoulis, P.
Title The T2K experiment Type Journal Article
Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 659 Issue 1 Pages 106-135
Keywords Neutrinos; Neutrino oscillation; Long baseline; T2K; J-PARC; Super-Kamiokande
Abstract The T2K experiment is a long baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle theta(13) by observing nu(e) appearance in a nu(mu) beam. It also aims to make a precision measurement of the known oscillation parameters, Delta m(23)(2) and sin(2)2 theta(23), via nu(mu) disappearance studies. Other goals of the experiment include various neutrino cross-section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande) located 295 km away from J-PARC. This paper provides a comprehensive review of the instrumentation aspect of the T2K experiment and a summary of the vital information for each subsystem.
Address [Beznosko, D.; Gilje, K.; Hignight, J.; Imber, J.; Jung, C. K.; Le, P. T.; Lopez, G. D.; Malafis, C. J.; McGrew, C.; Nagashima, G.; Nelson, B.; Paul, P.; Ramos, K.; Schmidt, J.; Steffens, J.; Tadepalli, A. S.; Taylor, I. J.; Toki, W.; Yanagisawa, C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA, Email: chang.jung@stonybrook.edu
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000297826100016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 832
Permanent link to this record
 

 
Author Albertus, C.; Hernandez, E.; Nieves, J.
Title Exclusive c -> s, d semileptonic decays of ground-state spin-1/2 doubly charmed baryons Type Journal Article
Year 2011 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 704 Issue 5 Pages 499-509
Keywords
Abstract We evaluate exclusive semileptonic decays of ground-state spin-1/2 doubly heavy charmed baryons driven by a c -> s, d transition at the quark level. Our results for the form factors are consistent with heavy quark spin symmetry constraints which are valid in the limit of an infinitely massive charm quark and near zero recoil. Only a few exclusive semileptonic decay channels have been theoretically analyzed before. For those cases we find that our results are in a reasonable agreement with previous calculations.
Address [Albertus, C.; Hernandez, E.] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain, Email: gajatee@usal.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000296549200017 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 828
Permanent link to this record