|   | 
Details
   web
Records
Author Ferreiro, A.; Navarro-Salas, J.; Pla, S.
Title R-summed form of adiabatic expansions in curved spacetime Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 10 Pages 105011 - 12pp
Keywords
Abstract The Feynman propagator in curved spacetime admits an asymptotic (Schwinger-DeWitt) series expansion in derivatives of the metric. Remarkably, all terms in the series containing the Ricci scalar R can be summed exactly. We show that this (nonperturbative) property of the Schwinger-DeWitt series has a natural and equivalent counterpart in the adiabatic (Parker-Fulling) series expansion of the scalar modes in an homogeneous cosmological spacetime. The equivalence between both R-summed adiabatic expansions can be further extended when a background scalar field is also present.
Address [Ferreiro, Antonio] Univ Valencia, CSIC, Fac Fis, Ctr Mixto,Dept Fis Teor, Valencia 46100, Spain, Email: antonio.ferreiro@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000532656100007 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4395
Permanent link to this record
 

 
Author Beltran-Palau, P.; Navarro-Salas, J.; Pla, S.
Title Adiabatic regularization for Dirac fields in time-varying electric backgrounds Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 10 Pages 105014 - 15pp
Keywords
Abstract The adiabatic regularization method was originally proposed by Parker and Fulling to renormalize the energy-momentum tensor of scalar fields in expanding universes. It can be extended to renormalize the electric current induced by quantized scalar fields in a time-varying electric background. This can be done in a way consistent with gravity if the vector potential is considered as a variable of adiabatic order one. Assuming this, we further extend the method to deal with Dirac fields in four space-time dimensions. This requires a self-consistent ansatz for the adiabatic expansion, in presence of a prescribed time-dependent electric field, which is different from the conventional expansion used for scalar fields. Our proposal is consistent, in the massless limit, with the conformal anomaly. We also provide evidence that our proposed adiabatic expansion for the fermionic modes parallels the Schwinger-DeWitt adiabatic expansion of the two-point function. We give the renormalized expression of the electric current and analyze, using numerical and analytical tools, the pair production induced by a Sauter-type electric pulse. We also analyze the scaling properties of the current for a large field strength.
Address [Beltran-Palau, Pau; Navarro-Salas, Jose; Pla, Silvia] Univ Valencia, Fac Fis, Ctr Mixto Univ Valencia CSIC, Dept Fis Teor, Valencia 46100, Spain, Email: pau.beltran@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000534174400011 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4399
Permanent link to this record
 

 
Author del Rio, A.; Sanchis-Gual, N.; Mewes, V.; Agullo, I.; Font, J.A.; Navarro-Salas, J.
Title Spontaneous Creation of Circularly Polarized Photons in Chiral Astrophysical Systems Type Journal Article
Year 2020 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 124 Issue 21 Pages 211301 - 6pp
Keywords
Abstract This work establishes a relation between chiral anomalies in curved spacetimes and the radiative content of the gravitational field. In particular, we show that a flux of circularly polarized gravitational waves triggers the spontaneous creation of photons with net circular polarization from the quantum vacuum. Using waveform catalogs, we identify precessing binary black holes as astrophysical configurations that emit such gravitational radiation and then solve the fully nonlinear Einstein's equations with numerical relativity to evaluate the net effect. The quantum amplitude for a merger is comparable to the Hawking emission rate of the final black hole and small to be directly observed. However, the implications for the inspiral of binary neutron stars could be more prominent, as argued on symmetry grounds.
Address [del Rio, Adrian; Sanchis-Gual, Nicolas] Univ Lisbon, Inst Super Tecn, Ctr Astrofis & Gravitacao CENTRA, Ave Rovisco Pais 1, P-1049001 Lisbon, Portugal
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000535679100012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4407
Permanent link to this record
 

 
Author Ferreiro, A.; Navarro-Salas, J.
Title Running gravitational couplings, decoupling, and curved spacetime renormalization Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 4 Pages 045021 - 6pp
Keywords
Abstract We propose to slightly generalize the DeWitt-Schwinger adiabatic renormalization subtractions in curved space to include an arbitrary renornialization mass scale mu. The new predicted running for the gravitational couplings are fully consistent with decoupling of heavy massive fields. This is a somewhat improvement with respect to the more standard treatment of minimal (DeWitt-Schwinger) subtractions via dimensional regularization. We also show how the vacuum metamorphosis model emerges from the running couplings.
Address [Ferreiro, Antonio; Navarro-Salas, Jose] Univ Valencia, Fac Fis, CSIC, Ctr Mixto Univ Valencia,Dept Fis Teor, Valencia 46100, Spain, Email: antonio.ferreiro@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000563711800009 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4517
Permanent link to this record
 

 
Author Navarro-Salas, J.; Pla, S.
Title (F, G)-summed form of the QED effective action Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 103 Issue 8 Pages L081702 - 7pp
Keywords
Abstract We conjecture that the proper-time series expansion of the one-loop effective Lagrangian of quantum electrodynamics can be summed in all terms containing the field-strength invariants F = 1/4F F-mu nu(mu nu) (x), G = 1/4 (F) over tilde F-mu nu(mu nu) (x), including those also possessing derivatives of the electromagnetic field strength. This partial resummation is exactly encapsulated in a factor with the same form as the Heisenberg-Euler Lagrangian density, except that now the electric and magnetic fields can depend arbitrarily on spacetime coordinates. We provide strong evidence for this conjecture, which is proved to sixth order in the proper time. Furthermore, and as a byproduct, we generate some solvable electromagnetic backgrounds. We also discuss the implications for a generalization of the Schwinger formula for pair production induced by nonconstant electric fields. Finally, we briefly outline the extension of these results in the presence of gravity.
Address [Navarro-Salas, Jose; Pla, Silvia] Univ Valencia, Dept Fis Teor, Valencia 46100, Spain, Email: jnavarro@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000649081100005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4834
Permanent link to this record