|   | 
Details
   web
Records
Author Dehnadi, B.; Hoang, A.H.; Mateu, V.; Zebarjad, S.M.
Title Charm mass determination from QCD charmonium sum rules at order alpha(3)(s) Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 103 - 56pp
Keywords Sum Rules; QCD
Abstract We determine the (MS) over bar charm quark mass from a charmonium QCD sum rules analysis. On the theoretical side we use input from perturbation theory at O (alpha(3)(s)). Improvements with respect to previous O (alpha(3)(s)) analyses include (1) an account of all available e(+)e(-) hadronic cross section data and (2) a thorough analysis of perturbative uncertainties. Using a data clustering method to combine hadronic cross section data sets from di ff erent measurements we demonstrate that using all available experimental data up to c. m. energies of 10 : 538 GeV allows for determinations of experimental moments and their correlations with small errors and that there is no need to rely on theoretical input above the charmonium resonances. We also show that good convergence properties of the perturbative series for the theoretical sum rule moments need to be considered with some care when extracting the charm mass and demonstrate how to set up a suitable set of scale variations to obtain a proper estimate of the perturbative uncertainty. As the fi nal outcome of our analysis we obtain (m(c)) over bar((m(c)) over bar) = 1 : 282 +/- (0.009)(stat) +/- (0.009)(syst) +/- (0.019)(pert) +/- (0.010)(alpha s) +/- (0.002)(< GG >) GeV. The perturbative error is an order of magnitude larger than the one obtained in previous O (alpha(3)(s)) sum rule analyses.
Address [Dehnadi, Bahman; Zebarjad, S. Mohammad] Shiraz Univ, Dept Phys, Shiraz 71454, Iran, Email: bahman.dehnadi@univie.ac.at;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000324653800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1626
Permanent link to this record
 

 
Author Hirsch, M.; Lineros, R.A.; Morisi, S.; Palacio, J.; Rojas, N.; Valle, J.W.F.
Title WIMP dark matter as radiative neutrino mass messenger Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 149 - 18pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; Neutrino Physics
Abstract The minimal seesaw extension of the Standard SU(3)(c)circle times SU(2)(L)circle times U(1)(Y) Model requires two electroweak singlet fermions in order to accommodate the neutrino oscillation parameters at tree level. Here we consider a next to minimal extension where light neutrino masses are generated radiatively by two electroweak fermions: one singlet and one triplet under SU(2)(L). These should be odd under a parity symmetry and their mixing gives rise to a stable weakly interactive massive particle (WIMP) dark matter candidate. For mass in the GeV-TeV range, it reproduces the correct relic density, and provides an observable signal in nuclear recoil direct detection experiments. The fermion triplet component of the dark matter has gauge interactions, making it also detectable at present and near future collider experiments.
Address [Hirsch, M.; Lineros, R. A.; Palacio, J.; Valle, J. W. F.] Univ Valencia, Edificio Inst Paterna, CSIC, Inst Fis Corpuscular,AHEP Grp, E-46071 Valencia, Spain, Email: mahirsch@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000326047200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1623
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Oyanguren, A.; Ruiz Valls, P.
Title Differential branching fraction and angular analysis of the decay B-s(0) -> phi mu(+)mu(-) Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 084 - 18pp
Keywords Rare decay; Hadron-Hadron Scattering; B physics; Flavor physics
Abstract The determination of the differential branching fraction and the first angular analysis of the decay B-s(0) -> phi mu(+)mu(-) are presented using data, corresponding to an integrated luminosity of 1.0 fb(-1), collected by the LHCb experiment at root s = 7 TeV. The differential branching fraction is determined in bins of q(2), the invariant dimuon mass squared. Integration over the full q2 range yields a total branching fraction of B(B-s(0) -> phi mu(+)mu(-)) = (7.07(-0.59)(+0.64) +/- 0.17 +/- 0.71) x 10(-7), where the first uncertainty is statistical, the second systematic, and the third originates from the branching fraction of the normalisation channel. An angular analysis is performed to determine the angular observables F-L, S-3, A(6), and A(9). The observables are consistent with Standard Model expectations.
Address [Bediaga, I.; De Miranda, J. M.; Ferreira Rodrigues, F.; Hicheur, A.; Massafferri, A.; Nasteva, I.; dos Reis, A. C.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil, Email: christoph.langenbruch@cern.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000323202600084 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1634
Permanent link to this record
 

 
Author Celis, A.; Ilisie, V.; Pich, A.
Title LHC constraints on two-Higgs doublet models Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 053 - 44pp
Keywords Higgs Physics; Beyond Standard Model
Abstract A new Higgs-like boson with mass around 126 GeV has recently been discovered at the LHC. The available data on this new particle is analyzed within the context of two-Higgs doublet models without tree-level flavour-changing neutral currents. Keeping the generic Yukawa structure of the Aligned Two-Higgs Doublet Model framework, we study the implications of the LHC data on the allowed scalar spectrum. We analyze both the CP-violating and CP-conserving cases, and a few particular limits with a reduced number of free parameters, such as the usual models based on discrete Z(2) symmetries.
Address [Celis, Alejandro; Ilisie, Victor; Pich, Antonio] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain, Email: alejandro.celis@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000323202600053 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1635
Permanent link to this record
 

 
Author Deak, M.
Title Estimation of saturation and coherence effects in the KGBJS equation – a non-linear CCFM equation Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 087 - 18pp
Keywords QCD Phenomenology
Abstract We solve the modified non-linear extension of the CCFM equation – KGBJS equation – numerically for certain initial conditions and compare the resulting dipole amplitudes with those obtained front solving the original CCFM equation and the BFKL and BK equations for the same initial conditions. We improve the low transversal momentum behaviour of the KGBJS equation by a small modification.
Address [Deak, M.] Univ Santiago de Compostela, Fac Fis, Dept Fis Particulas, Santiago De Compostela 15706, Spain, Email: michal.deak@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000323202600087 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1636
Permanent link to this record