toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bridges, M.; Cranmer, K.; Feroz, F.; Hobson, M.; Ruiz de Austri, R.; Trotta, R. url  doi
openurl 
  Title A coverage study of the CMSSM based on ATLAS sensitivity using fast neural networks techniques Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 012 - 23pp  
  Keywords Supersymmetry; Phenomenology  
  Abstract We assess the coverage properties of confidence and credible intervals on the CMSSM parameter space inferred from a Bayesian posterior and the profile likelihood based on an ATLAS sensitivity study. In order to make those calculations feasible, we introduce a new method based on neural networks to approximate the mapping between CMSSM parameters and weak-scale particle masses. Our method reduces the computational effort needed to sample the CMSSM parameter space by a factor of similar to 10(4) with respect to conventional techniques. We find that both the Bayesian posterior and the profile likelihood intervals can significantly over-cover and identify the origin of this effect to physical boundaries in the parameter space. Finally, we point out that the effects intrinsic to the statistical procedure are conflated with simplifications to the likelihood functions from the experiments themselves.  
  Address [Bridges, Michael; Feroz, Farhan; Hobson, Mike] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England, Email: mb435@mrao.cam.ac.uk  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000289295200012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 610  
Permanent link to this record
 

 
Author Casas, J.A.; Moreno, J.M.; Rius, N.; Ruiz de Austri, R.; Zaldivar, B. url  doi
openurl 
  Title Fair scans of the seesaw. Consequences for predictions on LFV processes Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 034 - 22pp  
  Keywords Neutrino Physics; Supersymmetric Standard Model  
  Abstract We give a straightforward procedure to scan the seesaw parameter-space, using the common “R-parametrization”, in a complete way. This includes a very simple rule to incorporate the perturbativity requirement as a condition for the entries of the R-matrix. As a relevant application, we show that the somewhat propagated belief that BR(mu -> e, gamma) in supersymmetric seesaw models depends strongly on the value of theta(13) is an “optical effect” produced by incomplete scans, and does not hold after a careful analytical and numerical study. When the complete scan is done, BR(mu -> e, gamma) gets very insensitive to theta(13). This holds even if the right-handed neutrino masses are kept constant or under control (as is required for succesful leptogenesis). In most cases the values of BR(mu -> e, gamma) are larger than the experimental upper bound. Including (unflavoured) leptogenesis does not introduce any further dependence on theta(13), although decreases the typical value of BR(mu -> e, gamma).  
  Address [Alberto Casas, J.; Moreno, Jesus M.; Zaldivar, Bryam] UAM, IFT UAM CSIC, Inst Fis Teor, Madrid 28049, Spain, Email: alberto.casas@uam.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000289295200034 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 612  
Permanent link to this record
 

 
Author Pato, M.; Baudis, L.; Bertone, G.; Ruiz de Austri, R.; Strigari, L.E.; Trotta, R. url  doi
openurl 
  Title Complementarity of dark matter direct detection targets Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 83 Issue 8 Pages 083505 - 11pp  
  Keywords  
  Abstract We investigate the reconstruction capabilities of the dark matter mass and spin-independent cross section from future ton-scale direct detection experiments using germanium, xenon, or argon as targets. Adopting realistic values for the exposure, energy threshold, and resolution of dark matter experiments which will come online within 5 to 10 years, the degree of complementarity between different targets is quantified. We investigate how the uncertainty in the astrophysical parameters controlling the local dark matter density and velocity distribution affects the reconstruction. For a 50 GeV WIMP, astrophysical uncertainties degrade the accuracy in the mass reconstruction by up to a factor of similar to 4 for xenon and germanium, compared to the case when astrophysical quantities are fixed. However, the combination of argon, germanium, and xenon data increases the constraining power by a factor of similar to 2 compared to germanium or xenon alone. We show that future direct detection experiments can achieve self-calibration of some astrophysical parameters, and they will be able to constrain the WIMP mass with only very weak external astrophysical constraints.  
  Address [Pato, Miguel; Bertone, Gianfranco] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland, Email: pato@iap.fr  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000289353200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 605  
Permanent link to this record
 

 
Author Cabrera, M.E.; Casas, J.A.; Ruiz de Austri, R.; Trotta, R. url  doi
openurl 
  Title Quantifying the tension between the Higgs mass and (g-2)(mu) in the constrained MSSM Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 84 Issue 1 Pages 015006 - 7pp  
  Keywords  
  Abstract Supersymmetry has often been invoked as the new physics that might reconcile the experimental muon magnetic anomaly, a(mu), with the theoretical prediction (basing the computation of the hadronic contribution on e(+)e(-) data). However, in the context of the constrained minimal supersymmetric standard model (CMSSM), the required supersymmetric contributions (which grow with decreasing supersymmetric masses) are in potential tension with a possibly large Higgs mass (which requires large stop masses). In the limit of very large m(h) supersymmetry gets decoupled, and the CMSSM must show the same discrepancy as the standard model with a(mu). But it is much less clear for which size of m(h) does the tension start to be unbearable. In this paper, we quantify this tension with the help of Bayesian techniques. We find that for m(h) >= 125 GeV the maximum level of discrepancy given the current data (similar to 3.2 sigma) is already achieved. Requiring less than 3 sigma discrepancy, implies m(h) less than or similar to 120 GeV. For a larger Higgs mass we should give up either the CMSSM model or the computation of a(mu) based on e(+)e(-); or accept living with such an inconsistency.  
  Address [Cabrera, ME; Casas, JA] UAM, IFT UAM CSIC, Inst Fis Teor, Madrid 28049, Spain, Email: maria.cabrera@uam.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000292547200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 680  
Permanent link to this record
 

 
Author Feroz, F.; Cranmer, K.; Hobson, M.; Ruiz de Austri, R.; Trotta, R. url  doi
openurl 
  Title Challenges of profile likelihood evaluation in multi-dimensional SUSY scans Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 042 - 23pp  
  Keywords Supersymmetry Phenomenology  
  Abstract Statistical inference of the fundamental parameters of supersymmetric theories is a challenging and active endeavor. Several sophisticated algorithms have been employed to this end. While Markov-Chain Monte Carlo (MCMC) and nested sampling techniques are geared towards Bayesian inference, they have also been used to estimate frequentist confidence intervals based on the profile likelihood ratio. We investigate the performance and appropriate configuration of MULTINEST, a nested sampling based algorithm, when used for profile likelihood-based analyses both on toy models and on the parameter space of the Constrained MSSM. We find that while the standard configuration previously used in the literarture is appropriate for an accurate reconstruction of the Bayesian posterior, the profile likelihood is poorly approximated. We identify a more appropriate MULTINEST configuration for profile likelihood analyses, which gives an excellent exploration of the profile likelihood (albeit at a larger computational cost), including the identification of the global maximum likelihood value. We conclude that with the appropriate configuration MULTINEST is a suitable tool for profile likelihood studies, indicating previous claims to the contrary are not well founded.  
  Address [Feroz, F; Hobson, M] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England, Email: f.feroz@mrao.cam.ac.uk  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000293136500042 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 745  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva