|   | 
Details
   web
Records
Author de Florian, D.; Sborlini, G.F.R.; Rodrigo, G.
Title Two-loop QED corrections to the Altarelli-Parisi splitting functions Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 056 - 16pp
Keywords NLO Computations; QCD Phenomenology
Abstract We compute the two-loop QED corrections to the Altarelli-Parisi (AP) splitting functions by using a deconstructive algorithmic Abelianization of the well-known NLO QCD corrections. We present explicit results for the full set of splitting kernels in a basis that includes the leptonic distribution functions that, starting from this order in the QED coupling, couple to the partonic densities. Finally, we perform a phenomenological analysis of the impact of these corrections in the splitting functions.
Address [de Florian, Daniel] UNSAM, ICAS, Campus Miguelete,25 Mayo & Francia, RA-1650 Buenos Aires, DF, Argentina, Email: deflo@unsam.edu.ar;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000386669900007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2863
Permanent link to this record
 

 
Author Ayala, C.; Cvetic, G.; Kogerler, R.
Title Lattice-motivated holomorphic nearly perturbative QCD Type Journal Article
Year 2017 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 44 Issue 7 Pages 075001 - 30pp
Keywords perturbative QCD; lattice QCD; QCD phenomenology; resummation
Abstract Newer lattice results indicate that, in the Landau gauge at low spacelike momenta, the gluon propagator and the ghost dressing function are finite non-zero. This leads to a definition of the QCD running coupling, in a specific scheme, that goes to zero at low spacelike momenta. We construct a running coupling which fulfills these conditions, and at the same time reproduces to a high precision the perturbative behavior at high momenta. The coupling is constructed in such a way that it reflects qualitatively correctly the holomorphic (analytic) behavior of spacelike observables in the complex plane of the squared momenta, as dictated by the general principles of quantum field theories. Further, we require the coupling to reproduce correctly the nonstrange semihadronic decay rate of tau lepton which is the best measured low-momentum QCD observable with small higher-twist effects. Subsequent application of the Borel sum rules to the V + A spectral functions of tau lepton decays, as measured by OPAL Collaboration, determines the values of the gluon condensate and of the V + A six-dimensional condensate, and reproduces the data to a significantly higher precision than the usual (MS) over bar running coupling.
Address [Ayala, Cesar] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: Gorazd.Cvetic@usm.cl
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000402509800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3167
Permanent link to this record
 

 
Author Llanes Jurado, J.; Rodrigo, G.; Torres Bobadilla, W.J.
Title From Jacobi off-shell currents to integral relations Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 122 - 22pp
Keywords NLO Computations; QCD Phenomenology
Abstract In this paper, we study off-shell currents built from the Jacobi identity of the kinematic numerators of gg -> X with X = ss, q (q) over bar, gg. We find that these currents can be schematically written in terms of three-point interaction Feynman rules. This representation allows for a straightforward understanding of the Colour-Kinematics duality as well as for the construction of the building blocks for the generation of higher-multiplicity tree-level and multi-loop numerators. We also provide one-loop integral relations through the Loop-Tree duality formalism with potential applications and advantages for the computation of relevant physical processes at the Large Hadron Collider. We illustrate these integral relations with the explicit examples of QCD one-loop numerators of gg -> ss.
Address [Llanes Jurado, Jose; Rodrigo, German; Torres Bobadilla, William J.] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient, E-46980 Valencia, Spain, Email: jollaju@alumni.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000418560700004 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3431
Permanent link to this record
 

 
Author Coppola, M.; Gomez Dumm, D.; Noguera, S.; Scoccola, N.N.
Title Magnetic field driven enhancement of the weak decay width of charged pions Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 058 - 19pp
Keywords QCD Phenomenology
Abstract We study the effect of a uniform magnetic field B on the decays pi- > l- nu_l bar, where l(-)=e(-), μ(-), carrying out a general analysis that includes four pi (-) decay constants. Taking the values of these constants from a chiral effective Nambu-Jona-Lasinio (NJL) model, it is seen that the total decay rate gets strongly increased with respect to the B = 0 case, with an enhancement factor ranging from similar to 10 for eB = 0.1 GeV2 up to similar to 10(3) for eB = 1 GeV2. The ratio between electronic and muonic decays gets also enhanced, reaching a value of about 1 : 2 for eB = 1 GeV2. In addition, we find that for large B the angular distribution of outgoing antineutrinos shows a significant suppression in the direction of the magnetic field.
Address [Coppola, Maximo; Scoccola, Norberto N.] Consejo Nacl Invest Cient & Tecn, Rivadavia 1917, RA-1033 Buenos Aires, DF, Argentina, Email: coppola@tandar.cnea.gov.ar;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000570908100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4534
Permanent link to this record
 

 
Author Aguilera-Verdugo, J.J.; Hernandez-Pinto, R.J.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J.
Title Mathematical properties of nested residues and their application to multi-loop scattering amplitudes Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 112 - 42pp
Keywords NLO Computations; QCD Phenomenology
Abstract The computation of multi-loop multi-leg scattering amplitudes plays a key role to improve the precision of theoretical predictions for particle physics at high-energy colliders. In this work, we focus on the mathematical properties of the novel integrand-level representation of Feynman integrals, which is based on the Loop-Tree Duality (LTD). We explore the behaviour of the multi-loop iterated residues and explicitly show, by developing a general compact and elegant proof, that contributions associated to displaced poles are cancelled out. The remaining residues, called nested residues as originally introduced in ref. [1], encode the relevant physical information and are naturally mapped onto physical configurations associated to nondisjoint on-shell states. By going further on the mathematical structure of the nested residues, we prove that unphysical singularities vanish, and show how the final expressions can be written by using only causal denominators. In this way, we provide a mathematical proof for the all-loop formulae presented in ref. [2].
Address [Jesus Aguilera-Verdugo, J.; Rodrigo, German; Sborlini, German F. R.; Torres Bobadilla, William J.] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient, E-46980 Valencia, Spain, Email: jesus.aguilera@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000620526300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4726
Permanent link to this record