toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Donini, A.; Hernandez, P.; Lopez-Pavon, J.; Maltoni, M. url  doi
openurl 
  Title Minimal models with light sterile neutrinos Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 105  
  Keywords  
  Abstract We study the constraints imposed by neutrino oscillation experiments on the minimal extensions of the Standard Model (SM) with n(R) gauge singlet fermions (“right-handed neutrinos”), that can account for neutrino masses. We consider the most general coupling of the new fields to the SM fields, in particular those that break lepton number and we do not assume any a priori hierarchy in the mass parameters. We proceed to analyze these models starting from the lowest level of complexity, defined by the number of extra fermionic degrees of freedom. The simplest choice that has enough free parameters in principle (i.e. two mass differences and two angles) to explain the confirmed solar and atmospheric oscillations corresponds to n(R) = 1. This minimal choice is shown to be excluded by data. The next-to-minimal choice corresponds to n(R) = 2. We perform a systematic study of the full parameter space in the limit of degenerate Majorana masses by requiring that at least two neutrino mass differences correspond to those established by solar and atmospheric oscillations. We identify several types of spectra that can fit long-baseline reactor and accelerator neutrino oscillation data, but fail in explaining solar and/or atmospheric data. The only two solutions that survive are the expected seesaw and quasi-Dirac regions, for which we set lower and upper bounds respectively on the Majorana mass scale. Solar data from neutral current measurements provide essential information to constrain the quasi-Dirac region. The possibility to accommodate the LSND/MiniBoone and reactor anomalies, and the implications for neutrinoless double-beta decay and tritium beta decay are briefly discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000293741500041 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 760  
Permanent link to this record
 

 
Author Donini, A.; Hernandez, P.; Lopez-Pavon, J.; Maltoni, M.; Schwetz, T. url  doi
openurl 
  Title The minimal 3+2 neutrino model versus oscillation anomalies Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 161 - 20pp  
  Keywords Neutrino Physics; Beyond Standard Model  
  Abstract We study the constraints imposed by neutrino oscillation experiments on the minimal extension of the Standard Model that can explain neutrino masses, which requires the addition of just two singlet Weyl fermions. The most general renormalizable couplings of this model imply generically four massive neutrino mass eigenstates while one remains massless: it is therefore a minimal 3+2 model. The possibility to account for the confirmed solar, atmospheric and long-baseline oscillations, together with the LSND/MiniBooNE and reactor anomalies is addressed. We find that the minimal model can fit oscillation data including the anomalies better than the standard 3 nu model and similarly to the 3 + 2 phenomenological models, even though the number of free parameters is much smaller than in the latter. Accounting for the anomalies in the minimal model favours a normal hierarchy of the light states and requires a large reactor angle, in agreement with recent measurements. Our analysis of the model employs a new parametrization of seesaw models that extends the Casas-Ibarra one to regimes where higher order corrections in the light-heavy mixings are significant.  
  Address [Donini, A.; Hernandez, P.] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain, Email: andrea.donini@uam.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000307299800039 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1161  
Permanent link to this record
 

 
Author Bergstrom, J.; Gonzalez-Garcia, M.C.; Maltoni, M.; Pena-Garay, C.; Serenelli, A.M.; Song, N.Q. url  doi
openurl 
  Title Updated determination of the solar neutrino fluxes from solar neutrino data Type Journal Article
  Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 132 - 19pp  
  Keywords Neutrino Physics; Solar and Atmospheric Neutrinos  
  Abstract We present an update of the determination of the solar neutrino fluxes from a global analysis of the solar and terrestrial neutrino data in the framework of three-neutrino mixing. Using a Bayesian analysis we reconstruct the posterior probability distribution function for the eight normalization parameters of the solar neutrino fluxes plus the relevant masses and mixing, with and without imposing the luminosity constraint. We then use these results to compare the description provided by different Standard Solar Models. Our results show that, at present, both models with low and high metallicity can describe the data with equivalent statistical agreement. We also argue that even with the present experimental precision the solar neutrino data have the potential to improve the accuracy of the solar model predictions.  
  Address [Bergstroem, Johannes; Gonzalez-Garcia, M. C.] Univ Barcelona, Dept Estruct & Constituents Mat, Diagonal 647, E-08028 Barcelona, Spain, Email: bergstrom@ecm.ub.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000373050700004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2609  
Permanent link to this record
 

 
Author Vinyoles, N.; Serenelli, A.M.; Villante, F.L.; Basu, S.; Bergstrom, J.; Gonzalez-Garcia, M.C.; Maltoni, M.; Pena-Garay, C.; Song, N.Q. url  doi
openurl 
  Title A New Generation of Standard Solar Models Type Journal Article
  Year 2017 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 835 Issue 2 Pages 202 - 16pp  
  Keywords neutrinos; Sun: abundances; Sun: Helioseismology; Sun: interior  
  Abstract We compute a new generation of standard solar models (SSMs) that includes recent updates on some important nuclear reaction rates and a more consistent treatment of the equation of state. Models also include a novel and flexible treatment of opacity uncertainties based on opacity kernels, required in. light of recent theoretical and experimental works on radiative opacity. Two large sets of SSMs, each based on a different canonical set of solar abundances with high and low metallicity (Z), are computed to determine model uncertainties and correlations among different observables. We present detailed comparisons of high-and low-Z models against different ensembles of solar observables,. including solar neutrinos, surface helium abundance, depth of the. convective envelope, and sound speed profile. A global comparison, including all observables, yields a p-value of 2.7 sigma for the high-Z model and 4.7 sigma for the low-Z one. When the sound speed differences in the narrow region of 0.65 < r/R-circle dot < 0.70 are excluded from the analysis, results are 0.9 sigma and 3.0 sigma for high-and low-Z models respectively. These results show that. high-Z models agree well with solar data but have a systematic problem right below the bottom of the convective envelope linked to steepness of molecular weight and temperature gradients, and that low-Z models lead to a much more general disagreement with solar data. We also show that, while simple parametrizations of opacity uncertainties can strongly alleviate the solar abundance problem, they are insufficient to substantially improve the agreement of SSMs with helioseismic data beyond that obtained for high-Z models due to the intrinsic correlations of theoretical predictions.  
  Address [Vinyoles, Nuria; Serenelli, Aldo M.] CSIC IEEC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Barcelona, Spain, Email: vinyoles@ice.csic.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000401145700018 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3145  
Permanent link to this record
 

 
Author Coloma, P.; Esteban, I.; Gonzalez-Garcia, M.C.; Maltoni, M. url  doi
openurl 
  Title Improved global fit to Non-Standard neutrino Interactions using COHERENT energy and timing data Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 023 - 30pp  
  Keywords Beyond Standard Model; Neutrino Physics; Solar and Atmospheric Neutrinos  
  Abstract We perform a global fit to neutrino oscillation and coherent neutrino-nucleus scattering data, using both timing and energy information from the COHERENT experiment. The results are used to set model-independent bounds on four-fermion effective operators inducing non-standard neutral-current neutrino interactions. We quantify the allowed ranges for their Wilson coefficients, as well as the status of the LMA-D solution, for a wide class of new physics models with arbitrary ratios between the strength of the operators involving up and down quarks. Our results are presented for the COHERENT experiment alone, as well as in combination with the global data from oscillation experiments. We also quantify the dependence of our results for COHERENT with respect to the choice of quenching factor, nuclear form factor, and the treatment of the backgrounds.  
  Address [Coloma, Pilar] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest, E-46980 Valencia, Spain, Email: pcoloma@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000519223000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4330  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva