|   | 
Details
   web
Records
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title The effect of the geomagnetic field on cosmic ray energy estimates and large scale anisotropy searches on data from the Pierre Auger Observatory Type Journal Article
Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 022
Keywords
Abstract We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than 60 degrees, detected at the Pierre Auger Observatory. the geomagnetic field induces an azimuthal modulation of the estimated energy of cosmic rays up to the similar to 2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shown to induce a pseudo-dipolar pattern at the percent level in the declination distribution that needs to be accounted for.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000298141300022 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 865
Permanent link to this record
 

 
Author Semikoz, V.B.; Valle, J.W.F.
Title Chern-Simons anomaly as polarization effect Type Journal Article
Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 048
Keywords
Abstract The parity violating, Chern-Simons term in the epoch before the electroweak phase transition can be interpreted as a polarization effect associated to massless right-handed electrons (positrons) in the presence of a large-scale seed hypermagnetic field. We reconfirm the viability of a unified seed field scenario relating the cosmological baryon asymmetry and the origin of the protogalactic large-scale magnetic fields observed in astronomy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000298141300048 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 866
Permanent link to this record
 

 
Author ANTARES, LIGO Scientific and Virgo Collaborations (Adrian-Martinez, S. et al); Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Ruiz-Rivas, J.; Sanchez-Losa, A.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007 Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 008 - 40pp
Keywords
Abstract We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January – September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino – gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000321200100008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1619
Permanent link to this record
 

 
Author Herrero-Garcia, J.; Patrick, R.; Scaffidi, A.
Title A semi-supervised approach to dark matter searches in direct detection data with machine learning Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 02 Issue Pages 039 - 19pp
Keywords
Abstract The dark matter sector remains completely unknown. It is therefore crucial to keep an open mind regarding its nature and possible interactions. Focusing on the case of Weakly Interacting Massive Particles, in this work we make this general philosophy more concrete by applying modern machine learning techniques to dark matter direct detection. We do this by encoding and decoding the graphical representation of background events in the XENONnT experiment with a convolutional variational autoencoder. We describe a methodology that utilizes the `anomaly score' derived from the reconstruction loss of the convolutional variational autoencoder as well as a pre-trained standard convolutional neural network, in a semi-supervised fashion. Indeed, we observe that optimum results are obtained only when both unsupervised and supervised anomaly scores are considered together. A data set that has a higher proportion of anomaly score is deemed anomalous and deserves further investigation. Contrary to classical analyses, in principle all information about the events is used, preventing unnecessary information loss. Lastly, we demonstrate the reach of learning-focused anomaly detection in this context by comparing results with classical inference, observing that, if tuned properly, these techniques have the potential to outperform likelihood-based methods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5495
Permanent link to this record
 

 
Author Babak, S.; Caprini, C.; Figueroa, D.G.; Karnesis, N.; Marcoccia, P.; Nardini, G.; Pieroni, M.; Ricciardone, A.; Sesana, A.; Torrado, J.
Title Stochastic gravitational wave background from stellar origin binary black holes in LISA Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue 8 Pages 034 - 37pp
Keywords
Abstract We use the latest constraints on the population of stellar origin binary black holes (SOBBH) from LIGO/Virgo/KAGRA (LVK) observations, to estimate the stochastic gravitational wave background (SGWB) they generate in the frequency band of LISA. In order to account for the faint and distant binaries, which contribute the most to the SGWB, we extend the merger rate at high redshift assuming that it tracks the star formation rate. We adopt different methods to compute the SGWB signal: we perform an analytical evaluation, we use Monte Carlo sums over the SOBBH population realisations, and we account for the role of the detector by simulating LISA data and iteratively removing the resolvable signals until only the confusion noise is left. The last method allows the extraction of both the expected SGWB and the number of resolvable SOBBHs. Since the latter are few for signal-to-noise ratio thresholds larger than five, we confirm that the spectral shape of the SGWB in the LISA band agrees with the analytical prediction of a single power law. We infer the probability distribution of the SGWB amplitude from the LVK GWTC-3 posterior of the binary population model: at the reference frequency of 0.003 Hz it has an interquartile range of h2ΩGW(f = 3 × 10-3 Hz) ∈ [5.65, 11.5] × 10-13, in agreement with most previous estimates. We then perform a MC analysis to assess LISA's capability to detect and characterise this signal. Accounting for both the instrumental noise and the galactic binaries foreground, with four years of data, LISA will be able to detect the SOBBH SGWB with percent accuracy, narrowing down the uncertainty on the amplitude by one order of magnitude with respect to the range of possible amplitudes inferred from the population model. A measurement of this signal by LISA will help to break the degeneracy among some of the population parameters, and provide interesting constraints, in particular on the redshift evolution of the SOBBH merger rate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6081
Permanent link to this record
 

 
Author Cervantes-Cota, J.L.; de Putter, R.; Linder, E.V.
Title Induced gravity and the attractor dynamics of dark energy/dark matter Type Journal Article
Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 12 Issue 12 Pages 019 - 20pp
Keywords modified gravity; dark energy theory
Abstract Attractor solutions that give dynamical reasons for dark energy to act like the cosmological constant, or behavior close to it, are interesting possibilities to explain cosmic acceleration. Coupling the scalar field to matter or to gravity enlarges the dynamical behavior; we consider both couplings together, which can ameliorate some problems for each individually. Such theories have also been proposed in a Higgs-like fashion to induce gravity and unify dark energy and dark matter origins. We explore restrictions on such theories due to their dynamical behavior compared to observations of the cosmic expansion. Quartic potentials in particular have viable stability properties and asymptotically approach general relativity.
Address [Cervantes-Cota, Jorge L.] Inst Nacl Invest Nucl, Dept Fis, Mexico City 11801, DF, Mexico, Email: jorge.cervantes@inin.gob.mx
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000286930700019 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 533
Permanent link to this record
 

 
Author Villaescusa-Navarro, F.; Dalal, N.
Title Cores and cusps in warm dark matter halos Type Journal Article
Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 024 - 16pp
Keywords dark matter theory; dark matter simulations; dwarfs galaxies; rotation curves of galaxies
Abstract The apparent presence of large core radii in Low Surface Brightness galaxies has been claimed as evidence in favor of warm dark matter. Here we show that WDM halos do not have cores that are large fractions of the halo size: typically, r(core)/r(200) less than or similar to 10(-3). This suggests an astrophysical origin for the large cores observed in these galaxies, as has been argued by other authors.
Address [Villaescusa-Navarro, Francisco] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain, Email: villa@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000291258300024 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 641
Permanent link to this record
 

 
Author Mangano, G.; Miele, G.; Pastor, S.; Pisanti, O.; Sarikas, S.
Title Constraining the cosmic radiation density due to lepton number with Big Bang Nucleosynthesis Type Journal Article
Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 035 - 18pp
Keywords big bang nucleosynthesis; neutrino properties; cosmological neutrinos; physics of the early universe
Abstract The cosmic energy density in the form of radiation before and during Big Bang Nucleosynthesis (BBN) is typically parameterized in terms of the effective number of neutrinos N-eff. This quantity, in case of no extra degrees of freedom, depends upon the chemical potential and the temperature characterizing the three active neutrino distributions, as well as by their possible non-thermal features. In the present analysis we determine the upper bounds that BBN places on N-eff from primordial neutrino-antineutrino asymmetries, with a careful treatment of the dynamics of neutrino oscillations. We consider quite a wide range for the total lepton number in the neutrino sector, eta(nu) = eta(nu e) + eta(nu mu) + eta(nu tau) and the initial electron neutrino asymmetry eta(in)(nu e), solving the corresponding kinetic equations which rule the dynamics of neutrino (antineutrino) distributions in phase space due to collisions, pair processes and flavor oscillations. New bounds on both the total lepton number in the neutrino sector and the nu(e)-(nu) over bar (e) asymmetry at the onset of BBN are obtained fully exploiting the time evolution of neutrino distributions, as well as the most recent determinations of primordial H-2/H density ratio and He-4 mass fraction. Note that taking the baryon fraction as measured by WMAP, the H-2/H abundance plays a relevant role in constraining the allowed regions in the eta(nu)-eta(in)(nu e) plane. These bounds fix the maximum contribution of neutrinos with primordial asymmetries to N-eff as a function of the mixing parameter theta(13), and point out the upper bound N-eff less than or similar to 3.4. Comparing these results with the forthcoming measurement of N-eff by the Planck satellite will likely provide insight on the nature of the radiation content of the universe.
Address [Mangano, Gianpiero; Miele, Gennaro; Pisanti, Ofelia; Sarikas, Srdjan] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy, Email: mangano@na.infn.it
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000291258300035 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 642
Permanent link to this record
 

 
Author Gavela, M.B.; Lopez Honorez, L.; Mena, O.; Rigolin, S.
Title Dark coupling and gauge invariance Type Journal Article
Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 044 - 15pp
Keywords cosmological perturbation theory; dark energy theory; dark energy experiments
Abstract
Address [Gavela, M. B.; Lopez Honorez, L.] Univ Autonoma Madrid IFT UAM CSIC, Dept Fis Teor, Madrid 28049, Spain, Email: belen.gavela@uam.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000284825100044 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 316
Permanent link to this record
 

 
Author Carbone, C.; Mena, O.; Verde, L.
Title Cosmological parameters degeneracies and non-Gaussian halo bias Type Journal Article
Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages 020 - 17pp
Keywords power spectrum; redshift surveys; galaxy clusters; cosmological parameters from LSS
Abstract We study the impact of the cosmological parameters uncertainties on the measurements of primordial non-Gaussianity through the large-scale non-Gaussian halo bias effect. While this is not expected to be an issue for the standard Lambda CDM model, it may not be the case for more general models that modify the large-scale shape of the power spectrum. We consider the so-called local non-Gaussianity model, parametrized by the f(NL) non-Gaussianity parameter which is zero for a Gaussian case, and make forecasts on f(NL) from planned surveys, alone and combined with a Planck CMB prior. In particular, we consider EUCLID- and LSST-like surveys and forecast the correlations among f(NL) and the running of the spectral index alpha(s), the dark energy equation of state w, the effective sound speed of dark energy perturbations c(s)(2), the total mass of massive neutrinos M-nu = Sigma m(nu), and the number of extra relativistic degrees of freedom N-nu(rel). Neglecting CMB information on f(NL) and scales k > 0.03h/Mpc, we find that, if N-nu(rel) is assumed to be known, the uncertainty on cosmological parameters increases the error on f(NL) by 10 to 30% depending on the survey. Thus the f(NL) constraint is remarkable robust to cosmological model uncertainties. On the other hand, if N-nu(rel) is simultaneously constrained from the data, the f(NL) error increases by similar to 80%. Finally, future surveys which provide a large sample of galaxies or galaxy clusters over a volume comparable to the Hubble volume can measure primordial non-Gaussianity of the local form with a marginalized 1-sigma error of the order Delta f(NL) similar to 2 – 5, after combination with CMB priors for the remaining cosmological parameters. These results are competitive with CMB bispectrum constraints achievable with an ideal CMB experiment.
Address [Carbone, Carmelita] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy, Email: carmelita.carbone@unibo.it
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000283573200010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 347
Permanent link to this record