Aoki, M., Toma, T., & Vicente, A. (2015). Non-thermal production of minimal dark matter via right-handed neutrino decay. J. Cosmol. Astropart. Phys., 09(9), 063–19pp.
Abstract: Minimal Dark Matter (MDM) stands as one of the simplest dark matter scenarios. In MDM models, annihilation and co-annihilation processes among the members of the MDM multiplet are usually very efficient, pushing the dark matter mass above O(10) TeV in order to reproduce the observed dark matter relic density. Motivated by this little drawback, in this paper we consider an extension of the MDM scenario by three right-handed neutrinos. Two specific choices for the MDM multiplet are studied: a fermionic SU(2)(L) quintuplet and a scalar SU(2)(L) septuplet. The lightest right-handed neutrino, with tiny Yukawa couplings, never reaches thermal equilibrium in the early universe and is produced by freeze-in. This creates a link between dark matter and neutrino physics: dark matter can be non-thermally produced by the decay of the lightest right-handed neutrino after freeze-out, allowing to lower significantly the dark matter mass. We discuss the phenomenology of the non-thermally produced MDM and, taking into account significant Sommerfeld corrections, we find that the dark matter mass must have some specific values in order not to be in conflict with the current bounds from gamma-ray observations.
|
Lineros, R. A., & Pereira dos Santos, F. A. (2014). Inert scalar dark matter in an extra dimension inspired model. J. Cosmol. Astropart. Phys., 10(10), 059–17pp.
Abstract: In this paper we analyze a dark matter model inspired by theories with extra dimensions. The dark matter candidate corresponds to the first Kaluza-Klein mode of an real scalar added to the Standard Model. The tower of new particles enriches the calculation of the relic abundance. For large mass splitting, the model converges to the predictions of the inert singlet dark matter model. For nearly degenerate mass spectrum, coannihilations increase the cross-sections used for direct and indirect dark matter searches. Moreover, the Kaluza-Klein zero mode can mix with the SM higgs and further constraints can be applied.
|
Ghoshal, A., Gouttenoire, Y., Heurtier, L., & Simakachorn, P. (2023). Primordial black hole archaeology with gravitational waves from cosmic strings. J. High Energy Phys., 08(8), 196–43pp.
Abstract: Light primordial black holes (PBHs) with masses smaller than 10(9) g (10(-24) M-circle dot) evaporate before the onset of Big-Bang nucleosynthesis, rendering their detection rather challenging. If efficiently produced, they may have dominated the universe energy density. We study how such an early matter-dominated era can be probed successfully using gravitational waves (GW) emitted by local and global cosmic strings. While previous studies showed that a matter era generates a single-step suppression of the GW spectrum, we instead find a double-step suppression for local-string GW whose spectral shape provides information on the duration of the matter era. The presence of the two steps in the GW spectrum originates from GW being produced through two events separated in time: loop formation and loop decay, taking place either before or after the matter era. The second step – called the knee – is a novel feature which is universal to any early matter-dominated era and is not only specific to PBHs. Detecting GWs from cosmic strings with LISA, ET, or BBO would set constraints on PBHs with masses between 10(6) and 10(9) g for local strings with tension G μ= 10(-11), and PBHs masses between 10(4) and 10(9) g for global strings with symmetry-breaking scale eta = 10(15) GeV. Effects from the spin of PBHs are discussed.
|
Di Bari, P., King, S. F., & Hossain Rahat, M. (2024). Gravitational waves from phase transitions and cosmic strings in neutrino mass models with multiple majorons. J. High Energy Phys., 05(5), 068–31pp.
Abstract: We explore the origin of Majorana masses within the majoron model and how this can lead to the generation of a distinguishable primordial stochastic background of gravitational waves. We first show how in the simplest majoron model only a contribution from cosmic string can be within the reach of planned experiments. We then consider extensions containing multiple complex scalars, demonstrating how in this case a spectrum comprising contributions from both a strong first order phase transition and cosmic strings can naturally emerge. We show that the interplay between multiple scalar fields can amplify the phase transition signal, potentially leading to double peaks over the wideband sloped spectrum from cosmic strings. We also underscore the possibility of observing such a gravitational wave background to provide insights into the reheating temperature of the universe. We conclude highlighting how the model can be naturally combined with scenarios addressing the origin of matter of the universe, where baryogenesis occurs via leptogenesis and a right-handed neutrino plays the role of dark matter.
|
Strumia, A., & Landini, G. (2025). Optical gravitational waves as signals of gravitationally-decaying particles. J. High Energy Phys., 04(4), 068–23pp.
Abstract: Long-lived heavy particles present during the big bang could have a decay channel opened by gravitons. Such decays can produce gravitational waves with large enough abundance to be detectable, and a peculiar narrow spectrum peaked today around optical frequencies. We identify which particles can decay in one or two gravitons. The maximal gravitational wave abundance arises from theories with extra hidden strong gauge dynamics, such as a confining pure-glue group. An interesting abundance also arises in theories with perturbative couplings. Future observation might shed light on early cosmology and allow some spectroscopy of sub-Planckian gravitationally-decaying particles, plausibly present in a variety of theories such as gauge unification, supersymmetry, extra dimensions, strings.
|