|   | 
Details
   web
Records
Author Gonzalez-Iglesias, D.; Gimeno, B.; Esperante, D.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster-Martinez, N.; Blanch, C.; Martinez, E.; Menendez, A.; Fuster, J.; Grudiev, A.
Title Non-resonant ultra-fast multipactor regime in dielectric-assist accelerating structures Type Journal Article
Year 2024 Publication Results in Physics Abbreviated Journal Results Phys.
Volume 56 Issue Pages 107245 - 12pp
Keywords (down) Multipactor; Dielectric accelerating structures; RF particle accelerators; Plasma discharge
Abstract The objective of this work is the evaluation of the risk of suffering a multipactor discharge in an S-band dielectric-assist accelerating (DAA) structure for a compact low-energy linear particle accelerator dedicated to hadrontherapy treatments. A DAA structure consists of ultra-low loss dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure, with the advantage of having an extremely high quality factor and very high shunt impedance at room temperature, and it is therefore proposed as a potential alternative to conventional disk-loaded copper structures. However, it has been observed that these structures suffer from multipactor discharges. In fact, multipactor is one of the main problems of these devices, as it limits the maximum accelerating gradient. Because of this, the analysis of multipactor risk in the early design steps of DAA cavities is crucial to ensure the correct performance of the device after fabrication. In this paper, we present a comprehensive and detailed study of multipactor in our DAA design through numerical simulations performed with an in-house developed code based on the Monte-Carlo method. The phenomenology of the multipactor (resonant electron trajectories, electron flight time between impacts, etc.) is described in detail for different values of the accelerating gradient. It has been found that in these structures an ultra-fast non-resonant multipactor appears, which is different from the types of multipactor theoretically studied in the scientific literature. In addition, the effect of several low electron emission coatings on the multipactor threshold is investigated. Furthermore, a novel design based on the modification of the DAA cell geometry for multipactor mitigation is introduced, which shows a significant increase in the accelerating gradient handling capabilities of our prototype.
Address [Gonzalez-Iglesias, Daniel; Gimeno, Benito; Esperante, Daniel; Martinez-Reviriego, Pablo; Martin-Luna, Pablo; Fuster-Martinez, Nuria; Blanch, Cesar; Martinez, Eduardo; Menendez, Abraham; Fuster, Juan] CSIC UV, Inst Fis Corpuscular IF, c Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: daniel.gonzalez-iglesias@uv.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-3797 ISBN Medium
Area Expedition Conference
Notes WOS:001133850600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5866
Permanent link to this record
 

 
Author Pajtler, M.V. et al; Gadea, A.
Title Excited states of Y-90,Y-92,Y-94 populated in Zr-90+Pb-208 multinucleon transfer reaction Type Journal Article
Year 2021 Publication Physica Scripta Abbreviated Journal Phys. Scr.
Volume 96 Issue 3 Pages 035305 - 7pp
Keywords (down) multinucleon transfer reactions; gamma spectroscopy; magnetic spectrometers; gamma-ray spectrometers
Abstract Multinucleon transfer reactions in Zr-90+Pb-208 have been studied via fragment-gamma coincidences, employing the PRISMA magnetic spectrometer coupled to the CLARA gamma-array. An analysis on Y isotopes has been carried out incorporating spectroscopic as well as reaction mechanism aspects. New gamma transitions have been observed in Y-94, confirming the findings of recent studies where nuclei were produced via fission of uranium, and a comparison with near-by Y-90,Y-92 isotopes populated in the same reaction has been discussed. Experimental cross sections have been extracted and compared with the GRAZING calculations, showing a fair agreement along the neutron pick-up side. The results confirm how multinucleon transfer reactions are a suitable mechanism for the study of neutron-rich nuclei.
Address [Pajtler, M. Varga] Univ Osijek, Dept Phys, Osijek, Croatia, Email: Suzana.Szilner@irb.hr;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8949 ISBN Medium
Area Expedition Conference
Notes WOS:000611517400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4694
Permanent link to this record
 

 
Author Salesa Greus, F.; Sanchez Losa, A.
Title Multimessenger Astronomy with Neutrinos Type Journal Article
Year 2021 Publication Universe Abbreviated Journal Universe
Volume 7 Issue 11 Pages 397 - 11pp
Keywords (down) multimessenger astronomy; astroparticle physics; neutrinos
Abstract Multimessenger astronomy is arguably the branch of the astroparticle physics field that has seen the most significant developments in recent years. In this manuscript, we will review the state-of-the-art, the recent observations, and the prospects and challenges for the near future. We will give special emphasis to the observation carried out with neutrino telescopes.
Address [Salesa Greus, Francisco; Sanchez Losa, Agustin] Univ Valencia, CSIC, IFIC Inst Fis Corpuscular, C Catedratico Jose Beltran 2, E-46980 Paterna, Spain, Email: sagreus@ific.uv.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000724957500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5036
Permanent link to this record
 

 
Author Bahl, H.; Martin Lozano, V.; Weiglein, G.
Title Simplified models for resonant neutral scalar production with missing transverse energy final states Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages 042 - 37pp
Keywords (down) Multi-Higgs Models; Other Weak Scale BSM Models; Specific BSM Phenomenology
Abstract Additional Higgs bosons appear in many extensions of the Standard Model (SM). While most existing searches for additional Higgs bosons concentrate on final states consisting of SM particles, final states containing beyond the SM (BSM) particles play an important role in many BSM models. In order to facilitate future searches for such final states, we develop a simplified model framework for heavy Higgs boson decays to a massive SM boson as well as one or more invisible particles. Allowing one kind of BSM mediator in each decay chain, we classify the possible decay topologies for each final state, taking into account all different possibilities for the spin of the mediator and the invisible particles. Our comparison of the kinematic distributions for each possible model realization reveals that the distributions corresponding to the different simplified model topologies are only mildly affected by the different spin hypotheses, while there is significant sensitivity for distinguishing between the different decay topologies. As a consequence, we point out that expressing the results of experimental searches in terms of the proposed simplified model topologies will allow one to constrain wide classes of different BSM models. The application of the proposed simplified model framework is explicitly demonstrated for the example of a mono-Higgs search. For each of the simplified models that are proposed in this paper we provide all necessary ingredients for performing Monte-Carlo simulations such that they can readily be applied in experimental analyses.
Address [Bahl, Henning] Univ Chicago, Dept Phys, 5720 South Ellis Ave, Chicago, IL 60637 USA, Email: hbahl@uchicago.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000881997400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5409
Permanent link to this record
 

 
Author Etxebeste, A.; Dauvergne, D.; Fontana, M.; Letang, J.M.; Llosa, G.; Muñoz, E.; Oliver, J.F.; Testa, E.; Sarrut, D.
Title CCMod: a GATE module for Compton camera imaging simulation Type Journal Article
Year 2020 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 65 Issue 5 Pages 055004 - 17pp
Keywords (down) Monte Carlo; simulation; gamma imaging; Compton camera
Abstract Compton cameras are gamma-ray imaging systems which have been proposed for a wide variety of applications such as medical imaging, nuclear decommissioning or homeland security. In the design and optimization of such a system Monte Carlo simulations play an essential role. In this work, we propose a generic module to perform Monte Carlo simulations and analyses of Compton Camera imaging which is included in the open-source GATE/Geant4 platform. Several digitization stages have been implemented within the module to mimic the performance of the most commonly employed detectors (e.g. monolithic blocks, pixelated scintillator crystals, strip detectors...). Time coincidence sorter and sequence coincidence reconstruction are also available in order to aim at providing modules to facilitate the comparison and reproduction of the data taken with different prototypes. All processing steps may be performed during the simulation (on-the-fly mode) or as a post-process of the output files (offline mode). The predictions of the module have been compared with experimental data in terms of energy spectra, angular resolution, efficiency and back-projection image reconstruction. Consistent results within a 3-sigma interval were obtained for the energy spectra except for low energies where small differences arise. The angular resolution measure for incident photons of 1275 keV was also in good agreement between both data sets with a value close to 13 degrees. Moreover, with the aim of demonstrating the versatility of such a tool the performance of two different Compton camera designs was evaluated and compared.
Address [Etxebeste, A.; Letang, J. M.; Sarrut, D.] Univ Lyon 1, Univ Lyon, CREATIS, CNRS UMR5220,Inserm U1044,INSA Lyon, Lyon, France, Email: ane.etxebeste@creatis.insa-lyon.fr
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000519034800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4321
Permanent link to this record
 

 
Author Valdes-Cortez, C.; Niatsetski, Y.; Perez-Calatayud, J.; Ballester, F.; Vijande, J.
Title A Monte Carlo study of the relative biological effectiveness in surface brachytherapy Type Journal Article
Year 2022 Publication Medical Physics Abbreviated Journal Med. Phys.
Volume 49 Issue Pages 5576-5588
Keywords (down) Monte Carlo; relative biological effectiveness; surface HDR brachytherapy
Abstract Purpose This work aims to simulate clustered DNA damage from ionizing radiation and estimate the relative biological effectiveness (RBE) for radionuclide (rBT)- and electronic (eBT)-based surface brachytherapy through a hybrid Monte Carlo (MC) approach, using realistic models of the sources and applicators. Methods Damage from ionizing radiation has been studied using the Monte Carlo Damage Simulation algorithm using as input the primary electron fluence simulated using a state-of-the-art MC code, PENELOPE-2018. Two Ir-192 rBT applicators, Valencia and Leipzig, one Co-60 source with a Freiburg Flap applicator (reference source), and two eBT systems, Esteya and INTRABEAM, have been included in this study implementing full realizations of their geometries as disclosed by the manufacturer. The role played by filtration and tube kilovoltage has also been addressed. Results For rBT, an RBE value of about 1.01 has been found for the applicators and phantoms considered. In the case of eBT, RBE values for the Esteya system show an almost constant RBE value of about 1.06 for all depths and materials. For INTRABEAM, variations in the range of 1.12-1.06 are reported depending on phantom composition and depth. Modifications in the Esteya system, filtration, and tube kilovoltage give rise to variations in the same range. Conclusions Current clinical practice does not incorporate biological effects in surface brachytherapy. Therefore, the same absorbed dose is administered to the patients independently on the particularities of the rBT or eBT system considered. The almost constant RBE values reported for rBT support that assumption regardless of the details of the patient geometry, the presence of a flattening filter in the applicator design, or even significant modifications in the photon energy spectra above 300 keV. That is not the case for eBT, where a clear dependence on the eBT system and the characteristics of the patient geometry are reported. A complete study specific for each eBT system, including detailed applicator characteristics (size, shape, filtering, among others) and common anatomical locations, should be performed before adopting an existing RBE value.
Address [Valdes-Cortez, Christian] Hosp Reg Antofagasta, Nucl Med Dept, Antofagasta, Chile, Email: cvalcort@gmail.com
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-2405 ISBN Medium
Area Expedition Conference
Notes WOS:000811709400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5262
Permanent link to this record
 

 
Author Oliver, S.; Gimenez-Alventosa, V.; Berumen, F.; Gimenez, V.; Beaulieu, L.; Ballester, F.; Vijande, J.
Title Benchmark of the PenRed Monte Carlo framework for HDR brachytherapy Type Journal Article
Year 2023 Publication Zeitschrift für Medizinische Physik Abbreviated Journal Z. Med. Phys.
Volume 33 Issue 4 Pages 511-528
Keywords (down) Monte Carlo; PenRed; Brachytherapy; DICOM; Medical physics
Abstract Purpose: The purpose of this study is to validate the PenRed Monte Carlo framework for clinical applications in brachytherapy. PenRed is a C++ version of Penelope Monte Carlo code with additional tallies and utilities. Methods and materials: Six benchmarking scenarios are explored to validate the use of PenRed and its improved bachytherapy-oriented capabilities for HDR brachytherapy. A new tally allowing the evaluation of collisional kerma for any material using the track length kerma estimator and the possibility to obtain the seed positions, weights and directions processing directly the DICOM file are now implemented in the PenRed distribution. The four non-clinical test cases developed by the Joint AAPM-ESTRO-ABG-ABS WG-DCAB were evaluated by comparing local and global absorbed dose differences with respect to established reference datasets. A prostate and a palliative lung cases, were also studied. For them, absorbed dose ratios, global absorbed dose differences, and cumulative dose-volume histograms were obtained and discussed. Results: The air-kerma strength and the dose rate constant corresponding to the two sources agree with the reference datatests within 0.3% (Sk) and 0.1% (K). With respect to the first three WG-DCAB test cases, more than 99.8% of the voxels present local (global) differences within +/- 1%(+/- 0.1%) of the reference datasets. For test Case 4 reference dataset, more than 94.9%(97.5%) of voxels show an agreement within +/- 1%(+/- 0.1%), better than similar benchmarking calculations in the literature. The track length kerma estimator scorer implemented increases the numerical efficiency of brachytherapy calculations two orders of magnitude, while the specific brachytherapy source allows the user to avoid the use of error-prone intermediate steps to translate the DICOM information into the simulation. In both clinical cases, only minor absorbed dose differences arise in the low-dose isodoses. 99.8% and 100% of the voxels have a global absorbed dose difference ratio within +/- 0.2%for the prostate and lung cases, respectively. The role played by the different segmentation and composition material in the bone structures was discussed, obtaining negligible absorbed dose differ-ences. Dose-volume histograms were in agreement with the reference data.Conclusions: PenRed incorporates new tallies and utilities and has been validated for its use for detailed and precise high-dose-rate brachytherapy simulations.
Address [Oliver, S.] Univ Politecn Valencia, Inst Segur Ind, Radiofis & Medioambiental ISIRYM, Camide Vera s n, Valencia 46022, Spain, Email: sanolgi@upvnet.upv.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0939-3889 ISBN Medium
Area Expedition Conference
Notes WOS:001137118400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5885
Permanent link to this record
 

 
Author Fletcher, E.M.; Ballester, F.; Beaulieu, L.; Morrison, H.; Poher, A.; Rivard, M.J.; Sloboda, R.S.; Vijande, J.; Thomson, R.M.
Title Generation and comparison of 3D dosimetric reference datasets for COMS eye plaque brachytherapy using model-based dose calculations Type Journal Article
Year 2024 Publication Medical Physics Abbreviated Journal Med. Phys.
Volume 51 Issue Pages 694-706
Keywords (down) Monte Carlo; ocular brachytherapy; treatment planning
Abstract PurposeA joint Working Group of the American Association of Physicists in Medicine (AAPM), the European Society for Radiotherapy and Oncology (ESTRO), and the Australasian Brachytherapy Group (ABG) was created to aid in the transition from the AAPM TG-43 dose calculation formalism, the current standard, to model-based dose calculations. This work establishes the first test cases for low-energy photon-emitting brachytherapy using model-based dose calculation algorithms (MBDCAs).Acquisition and Validation MethodsFive test cases are developed: (1) a single model 6711 125I brachytherapy seed in water, 13 seeds (2) individually and (3) in combination in water, (4) the full Collaborative Ocular Melanoma Study (COMS) 16-mm eye plaque in water, and (5) the full plaque in a realistic eye phantom. Calculations are done with four Monte Carlo (MC) codes and a research version of a commercial treatment planning system (TPS). For all test cases, local agreement of MC codes was within & SIM;2.5% and global agreement was & SIM;2% (4% for test case 5). MC agreement was within expected uncertainties. Local agreement of TPS with MC was within 5% for test case 1 and & SIM;20% for test cases 4 and 5, and global agreement was within 0.4% for test case 1 and 10% for test cases 4 and 5.Data Format and Usage NotesDose distributions for each set of MC and TPS calculations are available online () along with input files and all other information necessary to repeat the calculations.Potential ApplicationsThese data can be used to support commissioning of MBDCAs for low-energy brachytherapy as recommended by TGs 186 and 221 and AAPM Report 372. This work additionally lays out a sample framework for the development of test cases that can be extended to other applications beyond eye plaque brachytherapy.
Address [Fletcher, Elizabeth M.; Thomson, Rowan M.] Carleton Univ, Phys Dept, Carleton Lab Radiotherapy Phys, Ottawa, ON, Canada, Email: rthomson@physics.carleton.ca
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-2405 ISBN Medium
Area Expedition Conference
Notes WOS:001058112300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5632
Permanent link to this record
 

 
Author Valdes-Cortez, C.; Mansour, I.; Rivard, M.J.; Ballester, F.; Mainegra-Hing, E.; Thomson, R.M.; Vijande, J.
Title A study of Type B uncertainties associated with the photoelectric effect in low-energy Monte Carlo simulations Type Journal Article
Year 2021 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 66 Issue 10 Pages 105014 - 14pp
Keywords (down) Monte Carlo simulations; brachytherapy; low energy physics; photoelectric effect
Abstract Purpose. To estimate Type B uncertainties in absorbed-dose calculations arising from the different implementations in current state-of-the-art Monte Carlo (MC) codes of low-energy photon cross-sections (<200 keV). Methods. MC simulations are carried out using three codes widely used in the low-energy domain: PENELOPE-2018, EGSnrc, and MCNP. Three dosimetry-relevant quantities are considered: mass energy-absorption coefficients for water, air, graphite, and their respective ratios; absorbed dose; and photon-fluence spectra. The absorbed dose and the photon-fluence spectra are scored in a spherical water phantom of 15 cm radius. Benchmark simulations using similar cross-sections have been performed. The differences observed between these quantities when different cross-sections are considered are taken to be a good estimator for the corresponding Type B uncertainties. Results. A conservative Type B uncertainty for the absorbed dose (k = 2) of 1.2%-1.7% (<50 keV), 0.6%-1.2% (50-100 keV), and 0.3% (100-200 keV) is estimated. The photon-fluence spectrum does not present clinically relevant differences that merit considering additional Type B uncertainties except for energies below 25 keV, where a Type B uncertainty of 0.5% is obtained. Below 30 keV, mass energy-absorption coefficients show Type B uncertainties (k = 2) of about 1.5% (water and air), and 2% (graphite), diminishing in all materials for larger energies and reaching values about 1% (40-50 keV) and 0.5% (50-75 keV). With respect to their ratios, the only significant Type B uncertainties are observed in the case of the water-to-graphite ratio for energies below 30 keV, being about 0.7% (k = 2). Conclusions. In contrast with the intermediate (about 500 keV) or high (about 1 MeV) energy domains, Type B uncertainties due to the different cross-sections implementation cannot be considered subdominant with respect to Type A uncertainties or even to other sources of Type B uncertainties (tally volume averaging, manufacturing tolerances, etc). Therefore, the values reported here should be accommodated within the uncertainty budget in low-energy photon dosimetry studies.
Address [Valdes-Cortez, Christian; Ballester, Facundo; Vijande, Javier] Univ Valencia UV, Dept Fis Atom Mol & Nucl, Burjassot, Spain, Email: javier.vijande@uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000655291500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4847
Permanent link to this record
 

 
Author Azevedo, C.D.R.; Baeza, A.; Chauveau, E.; Corbacho, J.A.; Diaz, J.; Domange, J.; Marquet, C.; Martinez-Roig, M.; Piquemal, F.; Roldan, C.; Vasco, J.; Veloso, J.F.C.A.; Yahlali, N.
Title Design, setup and routine operation of a water treatment system for the monitoring of low activities of tritium in water Type Journal Article
Year 2023 Publication Nuclear Engineering and Technology Abbreviated Journal Nucl. Eng. Technol.
Volume 55 Issue 7 Pages 2349-2355
Keywords (down) Monitoring radioactive discharges; Remote management; Tritium; Small size water treatment plant
Abstract In the TRITIUM project, an on-site monitoring system is being developed to measure tritium (3H) levels in water near nuclear power plants. The quite low-energy betas emitted by 3H have a very short average path in water (5 mm as shown by simulations for 18 keV electrons). This path would be further reduced by impurities present in the water, resulting in a significant reduction of the detection efficiency. Therefore, one of the essential requirements of the project is the elimination of these impurities through a filtration process and the removal of salts in solution. This paper describes a water treatment system developed for the project that meets the following requirements: the water produced should be of nearpure water quality according to ISO 3696 grade 3 standard (conductivity < 10 mS/cm); the system should operate autonomously and be remotely monitored.
Address [Azevedo, C. D. R.; Veloso, J. F. C. A.] Univ Aveiro, Dept Fis I3N, Aveiro, Portugal, Email: corbamer@unex.es
Corporate Author Thesis
Publisher Korean Nuclear Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1738-5733 ISBN Medium
Area Expedition Conference
Notes WOS:001015455100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5569
Permanent link to this record