|   | 
Details
   web
Records
Author Herrero-Garcia, J.; Landini, G.; Vatsyayan, D.
Title Asymmetries in extended dark sectors: a cogenesis scenario Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 049 - 41pp
Keywords (down) Models for Dark Matter; Particle Nature of Dark Matter
Abstract The observed dark matter relic abundance may be explained by different mechanisms, such as thermal freeze-out/freeze-in, with one or more symmetric/asymmetric components. In this work we investigate the role played by asymmetries in determining the yield and nature of dark matter in non-minimal scenarios with more than one dark matter particle. In particular, we show that the energy density of a particle may come from an asymmetry, even if the particle is asymptotically symmetric by nature. To illustrate the different effects of asymmetries, we adopt a model with two dark matter components. We embed it in a multi-component cogenesis scenario that is also able to reproduce neutrino masses and the baryon asymmetry. In some cases, the model predicts an interesting monochromatic neutrino line that may be searched for at neutrino telescopes.
Address [Herrero-Garcia, Juan] Univ Valencia, Dept Fis Teor, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: juan.herrero@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000988319500002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5550
Permanent link to this record
 

 
Author Centelles Chulia, S.; Herrero-Brocal, A.; Vicente, A.
Title The Type-I Seesaw family Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 060 - 35pp
Keywords (down) Lepton Flavour Violation (charged); New Light Particles; Non-Standard Neutrino Properties; Specific BSM Phenomenology
Abstract We provide a comprehensive analysis of the Type-I Seesaw family of neutrino mass models, including the conventional type-I seesaw and its low-scale variants, namely the linear and inverse seesaws. We establish that all these models essentially correspond to a particular form of the type-I seesaw in the context of explicit lepton number violation. We then focus into the more interesting scenario of spontaneous lepton number violation, systematically categorizing all inequivalent minimal models. Furthermore, we identify and flesh out specific models that feature a rich majoron phenomenology and discuss some scenarios which, despite having heavy mediators and being invisible in processes such as μ-> e gamma, predict sizable rates for decays including the majoron in the final state.
Address [Centelles Chulia, Salvador] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany, Email: chulia@mpi-hd.mpg.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001264784900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6201
Permanent link to this record
 

 
Author Carcamo Hernandez, A.E.; Vishnudath, K.N.; Valle, J.W.F.
Title Linear seesaw mechanism from dark sector Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 046 - 18pp
Keywords (down) Lepton Flavour Violation (charged); Multi-Higgs Models; Neutrino Mixing; Sterile or Heavy Neutrinos
Abstract We propose a minimal model where a dark sector seeds neutrino mass generation radiatively within the linear seesaw mechanism. Neutrino masses are calculable, since treelevel contributions are forbidden by symmetry. They arise from spontaneous lepton number violation by a small Higgs triplet vacuum expectation value. Lepton flavour violating processes e.g. μ-> e gamma can be sizeable, despite the tiny neutrino masses. We comment also on dark-matter and collider implications.
Address [Hernandez, A. E. Carcamo; Vishnudath, K. N.] Univ Tecn Federico Santa Maria, Casilla 110-V, Valparaiso, Chile, Email: antonio.carcamo@usm.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001184730300002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5982
Permanent link to this record
 

 
Author Ferrando Solera, S.; Pich, A.; Vale Silva, L.
Title Direct bounds on Left-Right gauge boson masses at LHC Run 2 Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 027 - 39pp
Keywords (down) Left-Right Models; Grand Unification; New Gauge Interactions
Abstract While the third run of the Large Hadron Collider (LHC) is ongoing, the underlying theory that extends the Standard Model remains so far unknown. Left-Right Models (LRMs) introduce a new gauge sector, and can restore parity symmetry at high enough energies. If LRMs are indeed realized in nature, the mediators of the new weak force can be searched for in colliders via their direct production. We recast existing experimental limits from the LHC Run 2 and derive generic bounds on the masses of the heavy LRM gauge bosons. As a novelty, we discuss the dependence of the WR and ZR total width on the LRM scalar content, obtaining model-independent bounds within the specific realizations of the LRM scalar sectors analysed here. These bounds avoid the need to detail the spectrum of the scalar sector, and apply in the general case where no discrete symmetry is enforced. Moreover, we emphasize the impact on the WR production at LHC of general textures of the right-handed quark mixing matrix without manifest left-right symmetry. We find that the WR and ZR masses are constrained to lie above 2 TeV and 4 TeV, respectively.
Address [Solera, Sergio Ferrando; Pich, Antonio; Silva, Luiz Vale] Univ Valencia, Consejo Super Invest Cient, Dept Fis Teor, Inst Fis Corpuscular, Parc Cient,Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: Sergio.Ferrando@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001156665600003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5928
Permanent link to this record
 

 
Author Romero-Lopez, F.; Sharpe, S.R.; Blanton, T.D.; Briceno, R.A.; Hansen, M.T.
Title Numerical exploration of three relativistic particles in a finite volume including two-particle resonances and bound states Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 007 - 43pp
Keywords (down) Lattice QCD; Scattering Amplitudes
Abstract In this work, we use an extension of the quantization condition, given in ref. [1], to numerically explore the finite-volume spectrum of three relativistic particles, in the case that two-particle subsets are either resonant or bound. The original form of the relativistic three-particle quantization condition was derived under a technical assumption on the two-particle K matrix that required the absence of two-particle bound states or narrow two-particle resonances. Here we describe how this restriction can be lifted in a simple way using the freedom in the definition of the K-matrix-like quantity that enters the quantization condition. With this in hand, we extend previous numerical studies of the quantization condition to explore the finite-volume signature for a variety of two- and three-particle interactions. We determine the spectrum for parameters such that the system contains both dimers (two-particle bound states) and one or more trimers (in which all three particles are bound), and also for cases where the two-particle subchannel is resonant. We also show how the quantization condition provides a tool for determining infinite-volume dimer-particle scattering amplitudes for energies below the dimer breakup. We illustrate this for a series of examples, including one that parallels physical deuteron-nucleon scattering. All calculations presented here are restricted to the case of three identical scalar particles.
Address [Romero-Lopez, Fernando] Univ Valencia, CSIC, IFIC, Paterna 46980, Spain, Email: fernando.romero@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000497979000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4207
Permanent link to this record
 

 
Author Hansen, M.T.; Romero-Lopez, F.; Sharpe, S.R.
Title Generalizing the relativistic quantization condition to include all three-pion isospin channels Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 047 - 49pp
Keywords (down) Lattice QCD; Scattering Amplitudes
Abstract We present a generalization of the relativistic, finite-volume, three-particle quantization condition for non-identical pions in isosymmetric QCD. The resulting formalism allows one to use discrete finite-volume energies, determined using lattice QCD, to constrain scattering amplitudes for all possible values of two- and three-pion isospin. As for the case of identical pions considered previously, the result splits into two steps: the first defines a non-perturbative function with roots equal to the allowed energies, E-n(L), in a given cubic volume with side-length L. This function depends on an intermediate three-body quantity, denoted K-df;3, which can thus be constrained from lattice QCD input. The second step is a set of integral equations relating K-df,K-3 to the physical scattering amplitude, M-3. Both of the key relations, E-n(L) <-> K-df,K-3 and K-df,K-3 <-> M-3, are shown to be block-diagonal in the basis of definite three-pion isospin, I-pi pi pi, so that one in fact recovers four independent relations, corresponding to I-pi pi pi = 0; 1; 2; 3. We also provide the generalized threshold expansion of K-df,K-3 for all channels, as well as parameterizations for all three-pion resonances present for I-pi pi pi = 0 and I-pi pi pi = 1. As an example of the utility of the generalized formalism, we present a toy implementation of the quantization condition for I-pi pi pi = 0, focusing on the quantum numbers of the omega and h(1) resonances.
Address [Hansen, Maxwell T.] Univ Geneva, Theoret Phys Dept, CH-1211 Geneva 23, Switzerland, Email: maxwell.hansen@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000551981200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4474
Permanent link to this record
 

 
Author Blanton, T.D.; Hanlon, A.D.; Ben Horz; Morningstar, C.; Romero-Lopez, F.; Sharpe, S.R.
Title Interactions of two and three mesons including higher partial waves from lattice QCD Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 023 - 59pp
Keywords (down) Lattice QCD; Scattering Amplitudes
Abstract We study two- and three-meson systems composed either of pions or kaons at maximal isospin using Monte Carlo simulations of lattice QCD. Utilizing the stochastic LapH method, we are able to determine hundreds of two- and three-particle energy levels, in nine different momentum frames, with high precision. We fit these levels using the relativistic finite-volume formalism based on a generic effective field theory in order to determine the parameters of the two- and three-particle K-matrices. We find that the statistical precision of our spectra is sufficient to probe not only the dominant s-wave interactions, but also those in d waves. In particular, we determine for the first time a term in the three-particle K-matrix that contains two-particle d waves. We use three N-f = 2 + 1 CLS ensembles with pion masses of 200, 280, and 340 MeV. This allows us to study the chiral dependence of the scattering observables, and compare to the expectations of chiral perturbation theory.
Address [Blanton, Tyler D.; Sharpe, Stephen R.] Univ Washington, Phys Dept, Seattle, WA 98195 USA, Email: blantonl@uw.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000704432600004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4991
Permanent link to this record
 

 
Author Baron, R.; Boucaud, P.; Dimopoulos, P.; Frezzotti, R.; Palao, D.; Rossi, G.; Farchioni, F.; Munster, G.; Sudmann, T.; Gimenez, V.; Herdoiza, G.; Jansen, K.; Lubicz, V.; Simula, S.; Michael, C.; Scorzato, L.; Shindler, A.; Urbach, C.; Wenger, U.
Title Light meson physics from maximally twisted mass lattice QCD Type Journal Article
Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 097 - 41pp
Keywords (down) Lattice QCD; Quark Masses and SM Parameters; QCD
Abstract We present a comprehensive investigation of light meson physics using maximally twisted mass fermions for N-f = 2 mass-degenerate quark flavours. By employing four values of the lattice spacing, spatial lattice extents ranging from 2.0 fm to 2.5 fm and pseudo scalar masses in the range 280 less than or similar to m(PS) less than or similar to 650MeV we control the major systematic effects of our calculation. This enables us to confront our N-f = 2 data with SU(2) chiral perturbation theory and extract low energy constants of the effective chiral Lagrangian and derived quantities, such as the light quark mass.
Address [Baron, Remi; Boucaud, Phillip] Univ Paris 11, Phys Theor Lab, Ctr Orsay, F-91405 Orsay, France, Email: remi.baron@centraliens.net
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000282367800036 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 348
Permanent link to this record
 

 
Author Martinez Torres, A.; Oset, E.; Prelovsek, S.; Ramos, A.
Title Reanalysis of lattice QCD spectra leading to the Ds0*(2317) and Ds1*(2460) Type Journal Article
Year 2015 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 153 - 22pp
Keywords (down) Lattice QCD; Phenomenological Models; QCD
Abstract We perform a reanalysis of the energy levels obtained in a recent lattice QCD simulation, from where the existence of bound states of KD and KD* are induced and identified with the narrow D-s0*(2317) and D-s1*(2460) resonances. The reanalysis is done in terms of an auxiliary potential, employing a single-channel basis KD(*()), and a two-channel basis KD(*()), eta D-s(()*()). By means of an extended Luscher method we determine poles of the continuum t-matrix, bound by about 40 MeV with respect to the KD and KD* thresholds, which we identify with the D-s0*(2317) and D-s1*(2460) resonances. Using a sum rule that reformulates Weinberg compositeness condition we can determine that the state D-s0*(2317) contains a KD component in an amount of about 70%, while the state D-s1*(2460) contains a similar amount of KD*. We argue that the present lattice simulation results do not still allow us to determine which are the missing channels in the bound state wave functions and we discuss the necessary information that can lead to answer this question.
Address [Martinez Torres, A.] Univ Sao Paulo, Inst Fis, BR-05389970 Sao Paulo, SP, Brazil, Email: amartine@if.usp.br;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000355346500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2258
Permanent link to this record
 

 
Author Blanton, T.D.; Romero-Lopez, F.; Sharpe, S.R.
Title Implementing the three-particle quantization condition including higher partial waves Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 106 - 56pp
Keywords (down) Lattice QCD; Lattice Quantum Field Theory; Scattering Amplitudes
Abstract We present an implementation of the relativistic three-particle quantization condition including both s- and d-wave two-particle channels. For this, we develop a systematic expansion of the three-particle K matrix, K-df,K-3, about threshold, which is the generalization of the effective range expansion of the two-particle K matrix, K-2. Relativistic invariance plays an important role in this expansion. We find that d-wave two-particle channels enter first at quadratic order. We explain how to implement the resulting multichannel quantization condition, and present several examples of its application. We derive the leading dependence of the threshold three-particle state on the two-particle d-wave scattering amplitude, and use this to test our implementation. We show how strong two-particle d-wave interactions can lead to significant effects on the finite-volume three-particle spectrum, including the possibility of a generalized three-particle Efimov-like bound state. We also explore the application to the 3 pi(+) system, which is accessible to lattice QCD simulations, where we study the sensitivity of the spectrum to the components of K-df,K-3. Finally, we investigate the circumstances under which the quantization condition has unphysical solutions.
Address [Blanton, Tyler D.; Sharpe, Stephen R.] Univ Washington, Dept Phys, 3910 15th Ave NE, Seattle, WA 98195 USA, Email: blanton1@uw.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000462325900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3953
Permanent link to this record