|   | 
Details
   web
Records
Author HAWC Collaboration (Alfaro, R. et al); Salesa Greus, F.
Title Validation of standardized data formats and tools for ground-level particle-based gamma-ray observatories Type Journal Article
Year 2022 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.
Volume 667 Issue Pages A36 - 12pp
Keywords (down) methods; data analysis; gamma rays; general
Abstract Context. Ground-based gamma-ray astronomy is still a rather young field of research, with strong historical connections to particle physics. This is why most observations are conducted by experiments with proprietary data and analysis software, as is usual in the particle physics field. However, in recent years, this paradigm has been slowly shifting toward the development and use of open-source data formats and tools, driven by upcoming observatories such as the Cherenkov Telescope Array (CTA). In this context, a community-driven, shared data format (the gamma-astro-data-format, or GADF) and analysis tools such as Gammapy and ctools have been developed. So far, these efforts have been led by the Imaging Atmospheric Cherenkov Telescope community, leaving out other types of ground-based gamma-ray instruments. Aims. We aim to show that the data from ground particle arrays, such as the High-Altitude Water Cherenkov (HAWC) observatory, are also compatible with the GADF and can thus be fully analyzed using the related tools, in this case, Gammapy. Methods. We reproduced several published HAWC results using Gammapy and data products compliant with GADF standard. We also illustrate the capabilities of the shared format and tools by producing a joint fit of the Crab spectrum including data from six different gamma-ray experiments. Results. We find excellent agreement with the reference results, a powerful confirmation of both the published results and the tools involved. Conclusions. The data from particle detector arrays such as the HAWC observatory can be adapted to the GADF and thus analyzed with Gammapy. A common data format and shared analysis tools allow multi-instrument joint analysis and effective data sharing. To emphasize this, a sample of Crab nebula event lists is made public with this paper. Because of the complementary nature of pointing and wide-field instruments, this synergy will be distinctly beneficial for the joint scientific exploitation of future observatories such as the Southern Wide-field Gamma-ray Observatory and CTA.
Address [Albert, A.; Durocher, M.; Harding, J. P.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM USA, Email: laura.olivera-nieto@mpi-hd.mpg.de
Corporate Author Thesis
Publisher Edp Sciences S A Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6361 ISBN Medium
Area Expedition Conference
Notes WOS:000879223700008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5408
Permanent link to this record
 

 
Author Real, D.; Calvo, D.; Diaz, A.; Alves Garre, S.; Carretero, V.; Sanchez Losa, A.; Salesa Greus, F.
Title An Ultra-Narrow Time Optical Pulse Emitter Based on a Laser: UNTOPEL Type Journal Article
Year 2023 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 70 Issue 10 Pages 2364-2372
Keywords (down) Instrumentation electronics; neutrino telescope instrumentation; subnanosecond light source; time calibration instrument
Abstract Light sources that emit repetitive subnanosecond pulses are used in neutrino telescopes for time calibration. Optical pulses with an ultra-narrow (subnanosecond) width can replicate the light produced by neutrino interactions, and are an important calibration and test element. By measuring the time-of-flight of the light, it is possible to provide a relative time calibration for all the detector photomultipliers. This work presents the ultra-narrow time optical pulse emitter based on a laser (UNTOPEL), an instrument emitting ultra-short laser optical pulses with a duration of 500 ps, energies per pulse of four microjoules at a wavelength of 532 nm, and a timing precision of 400 ps. The UNTOPEL pulse intensity can be fine-tuned, which is a novelty and a significant advantage in those applications that need to illuminate light detectors located at different distances with the same light intensity. The UNTOPEL pulse intensity can be controlled remotely, allowing for its use in operating conditions where physical access is impossible or difficult. Moreover, it is easy to operate and can be easily controlled through an inter-integrated circuit bus. The UNTOPEL is a sound instrument used when subnanosecond pulses and variable energy emissions are needed.
Address [Real, Diego; Calvo, David; Garre, Sergio Alves; Carretero, Victor; Losa, Agustin Sanchez; Greus, FranciscoSalesa] Univ Valencia, IFIC Inst Fis Corpuscular, CSIC, Paterna 46980, Spain, Email: real@ific.uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:001098078200010 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5795
Permanent link to this record
 

 
Author HAWC Collaboration (Alfaro, R. et al); Salesa Greus, F.
Title Gamma/hadron separation with the HAWC observatory Type Journal Article
Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1039 Issue Pages 166984 - 13pp
Keywords (down) High energy; Crab Nebula; G/H separation; Machine Learning
Abstract The High Altitude Water Cherenkov (HAWC) gamma-ray observatory observes atmospheric showers produced by incident gamma rays and cosmic rays with energy from 300 GeV to more than 100 TeV. A crucial phase in analyzing gamma-ray sources using ground-based gamma-ray detectors like HAWC is to identify the showers produced by gamma rays or hadrons. The HAWC observatory records roughly 25,000 events per second, with hadrons representing the vast majority (> 99.9%) of these events. The standard gamma/hadron separation technique in HAWC uses a simple rectangular cut involving only two parameters. This work describes the implementation of more sophisticated gamma/hadron separation techniques, via machine learning methods (boosted decision trees and neural networks), and summarizes the resulting improvements in gamma/hadron separation obtained in HAWC.
Address [Alfaro, R.; Angeles Camacho, J. R.; Avila Rojas, D.; Belmont-Moreno, E.; Espinoza, C.; Garcia, D.; Hernandez, S.; Leon Vargas, H.; Sandoval, A.; Serna-Franco, J.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City, DF, Mexico, Email: tcapistran@astro.unam.mx;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000861747900006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5371
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Alves, S.; Calvo, D.; Carretero, V.; Gozzini, R.; Hernandez-Rey, J.J.; Lazo, A.; Manczak, J.; Real, D.; Sanchez-Losa, A.; Salesa Greus, F.; Saina, A.; Zornoza, J.D.; Zuñiga, J.
Title Search for neutrino counterparts to the gravitational wave sources from LIGO/Virgo O3 run with the ANTARES detector Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 004 - 19pp
Keywords (down) gravitational waves; sources; neutrino astronomy; neutron stars
Abstract Since 2015 the LIGO and Virgo interferometers have detected gravitational waves from almost one hundred coalescences of compact objects (black holes and neutron stars). This article presents the results of a search performed with data from the ANTARES telescope to identify neutrino counterparts to the gravitational wave sources detected during the third LIGO/Virgo observing run and reported in the catalogues GWTC-2, GWTC-2.1, and GWTC-3. This search is sensitive to all-sky neutrinos of all flavours and of energies > 100 GeV, thanks to the inclusion of both track-like events (mainly induced by v μcharged -current interactions) and shower-like events (induced by other interaction types). Neutrinos are selected if they are detected within +/- 500 s from the GW merger and with a reconstructed direction compatible with its sky localisation. No significant excess is found for any of the 80 analysed GW events, and upper limits on the neutrino emission are derived. Using the information from the GW catalogues and assuming isotropic emission, upper limits on the total energy Etot,v emitted as neutrinos of all flavours and on the ratio fv = Etot,v/EGW between neutrino and GW emissions are also computed. Finally, a stacked analysis of all the 72 binary black hole mergers (respectively the 7 neutron star-black hole merger candidates) has been performed to constrain the typical neutrino emission within this population, leading to the limits: Etot,v < 4.0 x 1053 erg and fv < 0.15 (respectively, Etot,v < 3.2 x 1053 erg and fv < 0.88) for E-2 spectrum and isotropic emission. Other assumptions including softer spectra and non-isotropic scenarios have also been tested.
Address [Albert, A.; Drouhin, D.; Martinez-Mora, A.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000989593000009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5545
Permanent link to this record
 

 
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F.
Title HAWC and Fermi-LAT Detection of Extended Emission from the Unidentified Source 2HWC J2006+341 Type Journal Article
Year 2020 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.
Volume 903 Issue 1 Pages L14 - 6pp
Keywords (down) Gamma-rays; Interstellar medium
Abstract The discovery of the TeV point source 2HWC J2006+341 was reported in the second HAWC gamma-ray catalog. We present a follow-up study of this source here. The TeV emission is best described by an extended source with a soft spectrum. At GeV energies, an extended source is significantly detected in Fermi-LAT data. The matching locations, sizes, and spectra suggest that both gamma-ray detections correspond to the same source. Different scenarios for the origin of the emission are considered and we rule out an association to the pulsar PSR J2004+3429 due to extreme energetics required, if located at a distance of 10.8 kpc.
Address [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.; Malone, K.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM USA, Email: miguel.araya@ucr.ac.cr
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-8205 ISBN Medium
Area Expedition Conference
Notes WOS:000584890800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4591
Permanent link to this record