Bandyopadhyay, P., Chun, E. J., Mandal, R., & Queiroz, F. S. (2019). Scrutinizing right-handed neutrino portal dark matter with Yukawa effect. Phys. Lett. B, 788, 530–534.
Abstract: Analyzing the neutrino Yukawa effect in the freeze-out process of a generic dark matter candidate with right-handed neutrino portal, we identify the parameter regions satisfying the observed dark matter relic density as well as the current Fermi-LAT and H.E.S.S. limits and the future CTA reach on gamma-ray signals. In this scenario the dark matter couples to the Higgs boson at one-loop level and thus could be detected by spin-independent nucleonic scattering for a reasonable range of the relevant parameters.
|
Ferrer-Sanchez, A., Martin-Guerrero, J., Ruiz de Austri, R., Torres-Forne, A., & Font, J. A. (2024). Gradient-annihilated PINNs for solving Riemann problems: Application to relativistic hydrodynamics. Comput. Meth. Appl. Mech. Eng., 424, 116906–18pp.
Abstract: We present a novel methodology based on Physics-Informed Neural Networks (PINNs) for solving systems of partial differential equations admitting discontinuous solutions. Our method, called Gradient-Annihilated PINNs (GA-PINNs), introduces a modified loss function that forces the model to partially ignore high-gradients in the physical variables, achieved by introducing a suitable weighting function. The method relies on a set of hyperparameters that control how gradients are treated in the physical loss. The performance of our methodology is demonstrated by solving Riemann problems in special relativistic hydrodynamics, extending earlier studies with PINNs in the context of the classical Euler equations. The solutions obtained with the GA-PINN model correctly describe the propagation speeds of discontinuities and sharply capture the associated jumps. We use the relative l(2) error to compare our results with the exact solution of special relativistic Riemann problems, used as the reference ''ground truth'', and with the corresponding error obtained with a second-order, central, shock-capturing scheme. In all problems investigated, the accuracy reached by the GA-PINN model is comparable to that obtained with a shock-capturing scheme, achieving a performance superior to that of the baseline PINN algorithm in general. An additional benefit worth stressing is that our PINN-based approach sidesteps the costly recovery of the primitive variables from the state vector of conserved variables, a well-known drawback of grid-based solutions of the relativistic hydrodynamics equations. Due to its inherent generality and its ability to handle steep gradients, the GA-PINN methodology discussed in this paper could be a valuable tool to model relativistic flows in astrophysics and particle physics, characterized by the prevalence of discontinuous solutions.
|
Geng, L. S., Molina, R., & Oset, E. (2017). On the chiral covariant approach to rho rho scattering. Chin. Phys. C, 41(12), 124101–9pp.
Abstract: We examine in detail a recent work (D. Gulmez, U. G. Meibner and J. A. Oller, Eur. Phys. J. C, 77: 460 (2017)), where improvements to make rho rho scattering relativistically covariant are made. The paper has the remarkable conclusion that the J=2 state disappears with a potential which is much more attractive than for J=0, where a bound state is found. We trace this abnormal conclusion to the fact that an “on-shell” factorization of the potential is done in a region where this potential is singular and develops a large discontinuous and unphysical imaginary part. A method is developed, evaluating the loops with full rho propagators, and we show that they do not develop singularities and do not have an imaginary part below threshold. With this result for the loops we define an effective potential, which when used with the Bethe-Salpeter equation provides a state with J=2 around the energy of the f(2)(1270). In addition, the coupling of the state to is evaluated and we find that this coupling and the T matrix around the energy of the bound state are remarkably similar to those obtained with a drastic approximation used previously, in which the q(2) terms of the propagators of the exchanged rho mesons are dropped, once the cut-off in the rho rho loop function is tuned to reproduce the bound state at the same energy.
|
Lozares, S., Tur, P., Ballester, F., Bundschuh, R. A., Gonzalez-Perez, V., Jaberi, R., et al. (2025). Head and neck and skin (HNS) GEC-ESTRO and BRAPHYQS working groups joint critical review of the use of Rhenium-188 in dermato-oncology. Clin. Transl. Radiat. Oncol., 53, 100991–9pp.
Abstract: Non-melanoma skin cancers are increasing globally, prompting the need for innovative, non-invasive treatment approaches. Radioactive rhenium (188Re) paste has emerged as an open-source radiation-based modality in dermato-oncology, offering a novel alternative to conventional radiotherapy and brachytherapy. In this review, a systematic literature search was conducted using PubMed, Scopus, Web of Science, and Google Scholar for studies published over the past 20 years. Data were extracted from case series, pilot studies, and clinical trials, with particular emphasis on response rates, dosimetric parameters, and treatment-associated toxicity. Findings from approximately 240 patients demonstrated complete response rates ranging from 86 % to 100 % after one or two treatment applications, while dosimetric analyses revealed a rapid dose fall-off that effectively confines the therapeutic effect to a tissue depth of 2-3 mm, with most adverse effects being mild and transient. Notably, 188Re differs from conventional brachytherapy (specifically high-dose-rate modality) due to its open-source application and unique dosimetric profile. The use of 188Re in clinical practice mandates a highly specialized, multidisciplinary team, including radiation oncologists, nuclear medicine specialists, and experienced medical physicists, and strict quality assurance protocols, thereby limiting its application to carefully selected cases. Although 188Re therapy offers a promising alternative for the treatment of superficial skin cancers, its distinct clinical and dosimetric characteristics warrant further randomized studies with extended follow-up to validate its efficacy and refine patient selection criteria under rigorous multidisciplinary oversight.
|
NEXT Collaboration(Jones, B. J. P. et al), Carcel, S., Carrion, J. V., Diaz, J., Martin-Albo, J., Martinez, A., et al. (2022). The dynamics of ions on phased radio-frequency carpets in high pressure gases and application for barium tagging in xenon gas time projection chambers. Nucl. Instrum. Methods Phys. Res. A, 1039, 167000–19pp.
Abstract: Radio-frequency (RF) carpets with ultra-fine pitches are examined for ion transport in gases at atmospheric pressures and above. We develop new analytic and computational methods for modeling RF ion transport at densities where dynamics are strongly influenced by buffer gas collisions. An analytic description of levitating and sweeping forces from phased arrays is obtained, then thermodynamic and kinetic principles are used to calculate ion loss rates in the presence of collisions. This methodology is validated against detailed microscopic SIMION simulations. We then explore a parameter space of special interest for neutrinoless double beta decay experiments: transport of barium ions in xenon at pressures from 1 to 10 bar. Our computations account for molecular ion formation and pressure dependent mobility as well as finite temperature effects. We discuss the challenges associated with achieving suitable operating conditions, which lie beyond the capabilities of existing devices, using presently available or near-future manufacturing techniques.
|