|   | 
Details
   web
Records
Author NEXT Collaboration (Martinez-Lema, G. et al); Palmeiro, B.; Botas, A.; Laing, A.; Renner, J.; Simon, A.; Alvarez, V.; Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Kekic, M.; Lopez-March, N.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Perez, J.; Querol, M.; Rodriguez, J.; Romo-Lugue, C.; Sorel, M.; Torrent, J.; Yahlali, N.
Title Calibration of the NEXT-White detector using Kr-83m decays Type Journal Article
Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 13 Issue Pages P10014 - 21pp
Keywords (down) Charge transport; multiplication and electroluminescence in rare gases and liquids; Gaseous imaging and tracking detectors; Time projection Chambers (TPC); Double-beta decay detectors
Abstract The NEXT-White (NEW) detector is currently the largest radio-pure high-pressure xenon gas time projection chamber with electroluminescent readout in the world. It has been operating at Laboratorio Subterraneo de Canfranc (LSC) since October 2016. This paper describes the calibrations performed using Kr-83m decays during a long run taken from March to November 2017 (Run II). Krypton calibrations are used to correct for the finite drift-electron lifetime as well as for the dependence of the measured energy on the event transverse position which is caused by variations in solid angle coverage both for direct and reflected light and edge effects. After producing calibration maps to correct for both effects we measure an excellent energy resolution for 41.5 keV point-like deposits of (4.553 +/- 0.010 (stat.) +/- 0.324 (sys.)) % FWHM in the full chamber and (3.804 +/- 0.013 (stat.) +/- 0.112 (sys.)) % FWHM in a restricted fiducial volume. Using naive 1/root E scaling, these values translate into resolutions of (0.5916 +/- 0.0014 (stat.) +/- 0.0421 (sys.)) % FWHM and (0.4943 +/- 0.0017 (stat.) +/- 0.0146 (sys.)) % FWHM at the Q(beta beta) energy of xenon double beta decay (2458 keV), well within range of our target value of 1%.
Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: gonzalo.martinez.lema@usc.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000447061800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3754
Permanent link to this record
 

 
Author Nygren, D.R.; Jones, B.J.P.; Lopez-March, N.; Mei, Y.; Psihas, F.; Renner, J.
Title Neutrinoless double beta decay with 82SeF6 and direct ion imaging Type Journal Article
Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 13 Issue Pages P03015 - 23pp
Keywords (down) Charge transport and multiplication in gas; Gaseous detectors; Ion identification systems; Ionization and excitation processes
Abstract We present a new neutrinoless double beta decay concept: the high pressure selenium hexafluoride gas time projection chamber. A promising new detection technique is outlined which combines techniques pioneered in high pressure xenon gas, such as topological discrimination, with the high Q-value afforded by the double beta decay isotope Se-82. The lack of free electrons in SeF6 mandates the use of an ion TPC. The microphysics of ion production and drift, which have many nuances, are explored. Background estimates are presented, suggesting that such a detector may achieve background indices of better than 1 count per ton per year in the region of interest at the 100 kg scale, and still better at the ton-scale.
Address [Nygren, D. R.; Jones, B. J. P.; Lopez-March, N.; Psihas, F.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA, Email: ben.jones@uta.edu
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000428146300005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3541
Permanent link to this record
 

 
Author NEXT Collaboration (Simon, A. et al); Felkai, R.; Martinez-Lema, G.; Sorel, M.; Gomez-Cadenas, J.J.; Alvarez, V.; Benlloch-Rodriguez, J.M.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Ferrario, P.; Kekic, M.; Laing, A.; Lopez-March, N.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Perez, J.; Querol, M.; Renner, J.; Rodriguez, J.; Romo Luque, C.; Torrent, J.; Yahlali, N.
Title Electron drift properties in high pressure gaseous xenon Type Journal Article
Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 13 Issue Pages P07013 - 23pp
Keywords (down) Charge transport and multiplication in gas; Charge transport, multiplication and electroluminescence in rare gases and liquids; Double-beta decay detectors; Gaseous imaging and tracking detectors
Abstract Gaseous time projection chambers (TPC) are a very attractive detector technology for particle tracking. Characterization of both drift velocity and diffusion is of great importance to correctly assess their tracking capabilities. NEXT-White is a High Pressure Xenon gas TPC with electroluminescent amplification, a 1:2 scale model of the future NEXT-100 detector, which will be dedicated to neutrinoless double beta decay searches. NEXT-White has been operating at Canfranc Underground Laboratory (LSC) since December 2016. The drift parameters have been measured using Kr-83(m) for a range of reduced drift fields at two different pressure regimes, namely 7.2 bar and 9.1 bar. The results have been compared with Magboltz simulations. Agreement at the 5% level or better has been found for drift velocity, longitudinal diffusion and transverse diffusion.
Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: ander@post.bgu.ac.il
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000439125700006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3671
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Valls, P.; Ruiz Vidal, J.; Sanchez Mayordomo, C.
Title Measurements of the branching fractions of Lambda(+)(c) -> p pi(-)pi(+), Lambda(+)(c) -> pK(-)K(+), and Lambda(+)(c) -> p pi K-(+) Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 043 - 23pp
Keywords (down) Branching fraction; Charm physics; Flavor physics; Hadron-Hadron scattering (experiments); Spectroscopy
Abstract The ratios of the branching fractions of the decays do Lambda(+)(c) -> , p pi(-)pi(+), Lambda(+->)(c) pK(-)K(+), and Lambda(+)(c) -> p pi K--(+) with respect to the Cabibbo-favoured Lambda(+)(c) -> pK(-)pi(+) decay are measured using proton-proton collision data collected with the LHCb experiment at a 7 TeV centre-of-mass energy and corresponding to an integrated luminosity of 1.0 fb(-1): B(Lambda(+)(c) -> p pi(-)pi(+))/B(Lambda(+)(c) -> pK(-)pi(+)) = (7.44 +/- 0.08 +/- 0.18)%. B(Lambda(+)(c) -> pK(-)K(+))/B(Lambda(+)(c) -> pK(-)pi(+) = (1.70 +/- 0.03 +/- 0.03)%, B(Lambda(+)(c) -> p pi(-)pi K-+(+))/B(Lambda(+)(c) -> pK(-)pi(+) = (0.165 +/- 0.015 +/- 0.005)%, where the uncertainties are statistical and systematic, respectively. These results are the most precise measurements of these quantities to date. When multiplied by the world average value for B(Lambda(+)(c) -> p pi(-)pi(+)), the corresponding branching fractions are B(Lambda(+)(c) -> p pi(-)pi(+) = (4.72 +/- 0.05 +/- 0.11 +/- 0.25) x 10(-3), B(Lambda(+)(c) -> pK(-)K(+)) = (1.08 +/- 0.02 +/- 0.02 +/- 0.06) x 10(-3), B(Lambda(+)(c) -> , p pi K--(+)) = (1.04 +/- 0.09 +/- 0.03 +/- 0.05) x 10(-4), where the final uncertainty is due to B(Lambda(+)(c) -> pK(-)pi(+)).
Address [Bediaga, I.; Torresl, M. Cruz; De Miranda, J. M.; Gomes, A.; Massafferri, A.; Rodriguez, J. Molina; dos Reis, A. C.; Rodrigues, A. B.; Guimaraes, V. Salustino; Lavra, I. Soares; Aoudel, R. Tourinho Jadallah] CBPF, Rio De Janeiro, Brazil, Email: stephen.ogilvy@cern.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000427543500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3532
Permanent link to this record
 

 
Author Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J.; Rubiera-Garcia, D.
Title Born-Infeld inspired modifications of gravity Type Journal Article
Year 2018 Publication Physics Reports Abbreviated Journal Phys. Rep.
Volume 727 Issue Pages 1-129
Keywords (down) Born-Infeld gravity; Astrophysics; Black holes; Cosmology; Early universe; Compact objects; Singularities
Abstract General Relativity has shown an outstanding observational success in the scales where it has been directly tested. However, modifications have been intensively explored in the regimes where it seems either incomplete or signals its own limit of validity. In particular, the breakdown of unitarity near the Planck scale strongly suggests that General Relativity needs to be modified at high energies and quantum gravity effects are expected to be important. This is related to the existence of spacetime singularities when the solutions of General Relativity are extrapolated to regimes where curvatures are large. In this sense, Born-Infeld inspired modifications of gravity have shown an extraordinary ability to regularise the gravitational dynamics, leading to non-singular cosmologies and regular black hole spacetimes in a very robust manner and without resorting to quantum gravity effects. This has boosted the interest in these theories in applications to stellar structure, compact objects, inflationary scenarios, cosmological singularities, and black hole and wormhole physics, among others. We review the motivations, various formulations, and main results achieved within these theories, including their observational viability, and provide an overview of current open problems and future research opportunities.
Address [Beltran Jimenez, Jose] Univ Autonoma Madrid, CSIC, Inst Fis Teor, E-28049 Madrid, Spain, Email: jose.beltran@uam.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1573 ISBN Medium
Area Expedition Conference
Notes WOS:000425482900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3497
Permanent link to this record