|   | 
Details
   web
Records
Author Chu, X.Y.; Garani, R.; Garcia-Cely, C.; Hambye, T.
Title Dark matter bound-state formation in the Sun Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 045 - 32pp
Keywords (down) Models for Dark Matter; Specific BSM Phenomenology; Neutrino Interactions; Early Universe Particle Physics
Abstract The Sun may capture asymmetric dark matter (DM), which can subsequently form bound-states through the radiative emission of a sub-GeV scalar. This process enables generation of scalars without requiring DM annihilation. In addition to DM capture on nucleons, the DM-scalar coupling responsible for bound-state formation also induces capture from self-scatterings of ambient DM particles with DM particles already captured, as well as with DM bound-states formed in-situ within the Sun. This scenario is studied in detail by solving Boltzmann equations numerically and analytically. In particular, we take into consideration that the DM self-capture rates require a treatment beyond the conventional Born approximation. We show that, thanks to DM scatterings on bound-states, the number of DM particles captured increases exponentially, leading to enhanced emission of relativistic scalars through bound-state formation, whose final decay products could be observable. We explore phenomenological signatures with the example that the scalar mediator decays to neutrinos. We find that the neutrino flux emitted can be comparable to atmospheric neutrino fluxes within the range of energies below one hundred MeV. Future facilities like Hyper-K, and direct DM detection experiments can further test such scenario.
Address [Chu, Xiaoyong] Austrian Acad Sci, Inst High Energy Phys, Nikolsdorfer Gasse 18, A-1050 Vienna, Austria, Email: xiaoyong.chu@oeaw.ac.at;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001255993100008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6172
Permanent link to this record
 

 
Author Centelles Chulia, S.; Herrero-Brocal, A.; Vicente, A.
Title The Type-I Seesaw family Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 060 - 35pp
Keywords (down) Lepton Flavour Violation (charged); New Light Particles; Non-Standard Neutrino Properties; Specific BSM Phenomenology
Abstract We provide a comprehensive analysis of the Type-I Seesaw family of neutrino mass models, including the conventional type-I seesaw and its low-scale variants, namely the linear and inverse seesaws. We establish that all these models essentially correspond to a particular form of the type-I seesaw in the context of explicit lepton number violation. We then focus into the more interesting scenario of spontaneous lepton number violation, systematically categorizing all inequivalent minimal models. Furthermore, we identify and flesh out specific models that feature a rich majoron phenomenology and discuss some scenarios which, despite having heavy mediators and being invisible in processes such as μ-> e gamma, predict sizable rates for decays including the majoron in the final state.
Address [Centelles Chulia, Salvador] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany, Email: chulia@mpi-hd.mpg.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001264784900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6201
Permanent link to this record
 

 
Author Bhattacharya, S.; Mondal, N.; Roshan, R.; Vatsyayan, D.
Title Leptogenesis, dark matter and gravitational waves from discrete symmetry breaking Type Journal Article
Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 029 - 25pp
Keywords (down) leptogenesis; dark matter theory; gravitational waves / theory
Abstract We analyse a model that connects the neutrino sector and the dark sector of the universe via a mediator 41., stabilised by a discrete Z4 symmetry that breaks to a remnant Z2 upon 41. acquiring a non -zero vacuum expectation value (v phi). The model accounts for the observed baryon asymmetry of the universe via additional contributions to the canonical Type -I leptogenesis. The Z4 symmetry breaking scale (v phi) in the model not only establishes a connection between the neutrino sector and the dark sector, but could also lead to gravitational wave signals that are within the reach of current and future experimental sensitivities.
Address [Bhattacharya, Subhaditya; Mondal, Niloy] Indian Inst Technol Guwahati, Dept Phys, Gauhati 781039, Assam, India, Email: subhab@iitg.ac.in;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001246744300003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6162
Permanent link to this record
 

 
Author CALICE Collaboration (Lai, S. et al); Irles, A.
Title Software compensation for highly granular calorimeters using machine learning Type Journal Article
Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 19 Issue 4 Pages P04037 - 28pp
Keywords (down) Large detector-systems performance; Pattern recognition; cluster finding; calibration and fitting methods; Performance of High Energy Physics Detectors
Abstract A neural network for software compensation was developed for the highly granular CALICE Analogue Hadronic Calorimeter (AHCAL). The neural network uses spatial and temporal event information from the AHCAL and energy information, which is expected to improve sensitivity to shower development and the neutron fraction of the hadron shower. The neural network method produced a depth-dependent energy weighting and a time-dependent threshold for enhancing energy deposits consistent with the timescale of evaporation neutrons. Additionally, it was observed to learn an energy-weighting indicative of longitudinal leakage correction. In addition, the method produced a linear detector response and outperformed a published control method regarding resolution for every particle energy studied.
Address [Lai, S.; Utehs, J.; Wilhahn, A.] Georg August Univ Gottingen, Phys Inst 2, Friedrich Hund Pl 1, D-37077 Gottingen, Germany, Email: jack.rolph@desy.de
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001230094600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6128
Permanent link to this record
 

 
Author Miyagawa, P.S. et al; Bernabeu, P.; Lacasta, C.; Solaz, C.; Soldevila, U.
Title Analysis of the results from Quality Control tests performed on ATLAS18 Strip Sensors during on-going production Type Journal Article
Year 2024 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1064 Issue Pages 169457 - 9pp
Keywords (down) HL-LHC; ATLAS; ITk; Strip sensors
Abstract The ATLAS experiment will replace its existing Inner Detector with the new all -silicon Inner Tracker (ITk) to cope with the operating conditions of the forthcoming high -luminosity phase of the LHC (HL-LHC). The outer regions of the ITk will be instrumented with similar to 18000 ATLAS18 strip sensors fabricated by Hamamatsu Photonics K.K. (HPK). With the launch of full-scale sensor production in 2021, the ITk strip sensor community has undertaken quality control (QC) testing of these sensors to ensure compliance with mechanical and electrical specifications agreed with HPK. The testing is conducted at seven QC sites on each of the monthly deliveries of similar to 500 sensors. This contribution will give an overview of the QC procedures and analysis; the tests most likely to determine pass/fail for a sensor are IV, long-term leakage current stability, full strip test and visual inspection. The contribution will then present trends in the results and properties following completion of similar to 60% of production testing. It will also mention challenges overcome through collaborative efforts with HPK during the early phases of production. With less than 5% of sensors rejected by QC testing, the overall production quality has been very good.
Address [Miyagawa, P. S.; Beck, G. A.; Bevan, A. J.; Chen, Z.; Dawson, I.; Zenz, S. C.] Queen Mary Univ London, Particle Phys Res Ctr, GO Jones Bldg, Mile End Rd, London E14NS, England, Email: paul.miyagawa@cern.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:001249611300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6158
Permanent link to this record
 

 
Author Giachino, A.; van Hameren, A.; Ziarko, G.
Title A new subtraction scheme at NLO exploiting the privilege of k<sub>T</sub>-factorization Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 167 - 39pp
Keywords (down) Higher-Order Perturbative Calculations; Deep Inelastic Scattering or Small-x Physics; Factorization; Renormalization Group
Abstract We present a subtraction method for the calculation of real-radiation integrals at NLO in hybrid k(T)-factorization. The main difference with existing methods for collinear factorization is that we subtract the momentum recoil, occurring due to the mapping from an (n + 1)-particle phase space to an n-particle phase space, from the initial-state momenta, instead of distributing it over the final-state momenta.
Address [Giachino, Alessandro; van Hameren, Andreas; Ziarko, Grzegorz] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland, Email: Alessandro.Giachino@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001254801000006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6175
Permanent link to this record
 

 
Author Forconi, M.; Giare, W.; Mena, O.; Ruchika; Di Valentino, E.; Melchiorri, A.; Nunes, R.C.
Title A double take on early and interacting dark energy from JWST Type Journal Article
Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue 5 Pages 097 - 37pp
Keywords (down) high redshift galaxies; dark energy theory; physics of the early universe
Abstract The very first light captured by the James Webb Space Telescope (JWST) revealed a population of galaxies at very high redshifts more massive than expected in the canonical Lambda CDM model of structure formation. Barring, among others, a systematic origin of the issue, in this paper, we test alternative cosmological perturbation histories. We argue that models with a larger matter component ohm m and/or a larger scalar spectral index n s can substantially improve the fit to JWST measurements. In this regard, phenomenological extensions related to the dark energy sector of the theory are appealing alternatives, with Early Dark Energy emerging as an excellent candidate to explain (at least in part) the unexpected JWST preference for larger stellar mass densities. Conversely, Interacting Dark Energy models, despite producing higher values of matter clustering parameters such as sigma 8 , are generally disfavored by JWST measurements. This is due to the energy -momentum flow from the dark matter to the dark energy sector, implying a smaller matter energy density. Upcoming observations may either strengthen the evidence or falsify some of these appealing phenomenological alternatives to the simplest Lambda CDM picture.
Address [Forconi, Matteo; Melchiorri, Alessandro] Univ Roma La Sapienza, Phys Dept, Ple Aldo Moro 2, I-00185 Rome, Italy, Email: matteo.forconi@roma1.infn.it;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001259284100005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6179
Permanent link to this record
 

 
Author Nieves, J.; Feijoo, A.; Albaladejo, M.; Du, M.L.
Title Lowest-lying 1/2- and 3/2- ΛQ resonances: From the strange to the bottom sectors Type Journal Article
Year 2024 Publication Progress in Particle and Nuclear Physics Abbreviated Journal Prog. Part. Nucl. Phys.
Volume 137 Issue Pages 104118 - 23pp
Keywords (down) Heavy quark symmetry; Constituent quark-model; Molecule; Charmed; Bottomed
Abstract We present a detailed study of the lowest-lying 1/2(-) and 3/2(-) Lambda Q resonances both in the heavy 2 2 quark (bottom and charm) and the strange sectors. We have paid special attention to the interplay between the constituent quark-model and chiral baryon-meson degrees of freedom, which are coupled using a unitarized scheme consistent with leading-order heavy quark symmetries. We show that the Lambda(b)(5912) [J(P) = 1/2(-)], Lambda(b)(5920) [J(P) = 3/2(-)] and the Lambda(c)(2625) [J(P) = 3/2-], and the Lambda(1520) [J(P) = 3/2(-)] admitting larger breaking corrections, are heavyquark spin-flavor siblings. They can be seen as dressed quark-model states with Sigma Q(()*()) pi molecular components of the order of 30%. The J(P)=1(-) Lambda(2595) has, however, a higher molecular 2 probability of at least 50%, and even values greater than 70% can be easily accommodated. This is because it is located almost on top of the threshold of the Sigma(c)pi pair, which largely influences its properties. Although the light degrees of freedom in this resonance would be coupled to spin-parity 1(-) as in the Lambda(b)(5912), Lambda(b)(5920) and Lambda(c)(2625), the Lambda(c)(2595) should not be considered as a heavy-quark spin-flavor partner of the former ones. We also show that the Lambda(1405) chiral two-pole pattern does not have analogs in the 1 – charmed and bottomed sectors, because the 2 N D-(*()) and N (B) over bar (()*()) channels do not play for heavy quarks the decisive role that the N (K) over bar does in the strange sector, and the notable influence of the bare quark-model states for the charm and bottom resonances. Finally, we predict the existence of two Lambda(b)(6070) and two Lambda(c)(2765) heavy-quark spin and flavor sibling odd parity states.
Address [Nieves, J.; Feijoo, A.; Albaladejo, M.] Inst Fis Corpuscular, Ctr Mixto, CSIC UV, Valencia, Spain, Email: jmnieves@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0146-6410 ISBN Medium
Area Expedition Conference
Notes WOS:001243410100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6153
Permanent link to this record
 

 
Author Magalhaes, R.B.; Ribeiro, G.P.; Lima, H.C.D.J.; Olmo, G.J.; Crispino, L.C.B.
Title Singular space-times with bounded algebraic curvature scalars Type Journal Article
Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue 5 Pages 114 - 34pp
Keywords (down) gravity; modified gravity; Wormholes
Abstract We show that the absence of unbounded algebraic curvature invariants constructed from polynomials of the Riemann tensor cannot guarantee the absence of strong singularities. As a consequence, it is not sufficient to rely solely on the analysis of such scalars to assess the regularity of a given space-time. This conclusion follows from the analysis of incomplete geodesics within the internal region of asymmetric wormholes supported by scalar matter which arise in two distinct metric-affine gravity theories. These wormholes have bounded algebraic curvature scalars everywhere, which highlights that their finiteness does not prevent the emergence of pathologies (singularities) in the geodesic structure of space-time. By analyzing the tidal forces in the internal wormhole region, we find that the angular components are unbounded along incomplete radial time-like geodesics. The strength of the singularity is determined by the evolution of Jacobi fields along such geodesics, finding that it is of strong type, as volume elements are torn apart as the singularity is approached. Lastly, and for completeness, we consider the wormhole of the quadratic Palatini theory and present an analysis of the tidal forces in the entire space-time.
Address [Magalhaes, Renan B.; Ribeiro, Gabriel P.; Lima Jr, Haroldo C. D.; Crispino, Luis C. B.] Univ Fed Para, Programa Posgrad Fis, BR-66075110 Belem, Para, Brazil, Email: renan.magalhaes@icen.ufpa.br;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001265908300012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6200
Permanent link to this record
 

 
Author Amarilo, K.M.; Ferreira Filho, M.B.; Araujo Filho, A.A.; Reis, J.A.A.S.
Title Gravitational waves effects in a Lorentz-violating scenario Type Journal Article
Year 2024 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 855 Issue Pages 138785 - 7pp
Keywords (down) Gravitational waves; Lorentz symmetry breaking; Polarization states; Quadrupole term
Abstract This paper focuses on how the production and polarization of gravitational waves are affected by spontaneous Lorentz symmetry breaking, which is driven by a self-interacting vector field. Specifically, we examine the impact of a smooth quadratic potential and a non-minimal coupling, discussing the constraints and causality features of the linearized Einstein equation. To analyze the polarization states of a plane wave, we consider a fixed vacuum expectation value (VEV) of the vector field. Remarkably, we verify that a space-like background vector field modifies the polarization plane and introduces a longitudinal degree of freedom. In order to investigate the Lorentz violation effect on the quadrupole formula, we use the modified Green function. Finally, we show that the space-like component of the background field leads to a third-order time derivative of the quadrupole moment, and the bounds for the Lorentz-breaking coefficients are estimated as well.
Address [Amarilo, K. M.; Ferreira Filho, M. B.] Univ Estado Rio de Janeiro, Dep Fis Nucl & Altas Energias, Inst Fis, Rua Sao Francisco Xavier 524, BR-20559900 Rio De Janeiro, RJ, Brazil, Email: kevin.amarilo@cern.ch;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:001257664300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6168
Permanent link to this record