|   | 
Details
   web
Records
Author Esteve, R.; Toledo, J.F.; Herrero, V.; Simon, A.; Monrabal, F.; Alvarez, V.; Rodriguez, J.; Querol, M.; Ballester, F.
Title The Event Detection System in the NEXT-White Detector Type Journal Article
Year 2021 Publication Sensors Abbreviated Journal Sensors
Volume 21 Issue 2 Pages 673 - 18pp
Keywords (down) xenon TPC; trigger concepts; data acquisition circuits; FPGA
Abstract This article describes the event detection system of the NEXT-White detector, a 5 kg high pressure xenon TPC with electroluminescent amplification, located in the Laboratorio Subterraneo de Canfranc (LSC), Spain. The detector is based on a plane of photomultipliers (PMTs) for energy measurements and a silicon photomultiplier (SiPM) tracking plane for offline topological event filtering. The event detection system, based on the SRS-ATCA data acquisition system developed in the framework of the CERN RD51 collaboration, has been designed to detect multiple events based on online PMT signal energy measurements and a coincidence-detection algorithm. Implemented on FPGA, the system has been successfully running and evolving during NEXT-White operation. The event detection system brings some relevant and new functionalities in the field. A distributed double event processor has been implemented to detect simultaneously two different types of events thus allowing simultaneous calibration and physics runs. This special feature provides constant monitoring of the detector conditions, being especially relevant to the lifetime and geometrical map computations which are needed to correct high-energy physics events. Other features, like primary scintillation event rejection, or a double buffer associated with the type of event being searched, help reduce the unnecessary data throughput thus minimizing dead time and improving trigger efficiency.
Address [Esteve Bosch, Raul; Toledo Alarcon, Jose F.; Herrero Bosch, Vicente; Alvarez Puerta, Vicente; Rodriguez Samaniego, Javier; Ballester Merelo, Francisco] Univ Politecn Valencia, CSIC, Inst Instrumentac Imagen Mol I3M, Ctr Mixto, Camino Vera S-N, Valencia 46022, Spain, Email: rauesbos@eln.upv.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000611719600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4693
Permanent link to this record
 

 
Author Aggarwal, N. et al; Figueroa, D.G.
Title Challenges and opportunities of gravitational-wave searches at MHz to GHz frequencies Type Journal Article
Year 2021 Publication Living Reviews in Relativity Abbreviated Journal Living Rev. Relativ.
Volume 24 Issue 1 Pages 4 - 74pp
Keywords (down) Ultra-high-frequency gravitational waves; Cosmological gravitational waves; Gravitational wave detectors; Fundamental physics with gavitational waves
Abstract The first direct measurement of gravitational waves by the LIGO and Virgo collaborations has opened up new avenues to explore our Universe. This white paper outlines the challenges and gains expected in gravitational-wave searches at frequencies above the LIGO/Virgo band, with a particular focus on Ultra High-Frequency Gravitational Waves (UHF-GWs), covering the MHz to GHz range. The absence of known astrophysical sources in this frequency range provides a unique opportunity to discover physics beyond the Standard Model operating both in the early and late Universe, and we highlight some of the most promising gravitational sources. We review several detector concepts that have been proposed to take up this challenge, and compare their expected sensitivity with the signal strength predicted in various models. This report is the summary of the workshop “Challenges and opportunities of high-frequency gravitational wave detection” held at ICTP Trieste, Italy in October 2019, that set up the stage for the recently launched Ultra-High-Frequency Gravitational Wave (UHF-GW) initiative.
Address [Aggarwal, Nancy] Northwestern Univ, Dept Phys & Astron, Ctr Interdisciplinary Explorat & Res Astrophys CI, Ctr Fundamental Phys, Evanston, IL 60208 USA, Email: nancy.aggarwal@northwestern.edu;
Corporate Author Thesis
Publisher Springer Int Publ Ag Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2367-3613 ISBN Medium
Area Expedition Conference
Notes WOS:000727359500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5074
Permanent link to this record
 

 
Author Aiola, S.; Amhis, Y.; Billoir, P.; Jashal, B.K.; Henry, L.; Oyanguren, A.; Marin Benito, C.; Polci, F.; Quagliani, R.; Schiller, M.; Wang, M.
Title Hybrid seeding: A standalone track reconstruction algorithm for scintillating fibre tracker at LHCb Type Journal Article
Year 2021 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.
Volume 260 Issue Pages 107713 - 5pp
Keywords (down) Track reconstruction; Pattern Recognition; LHCb
Abstract We describe the Hybrid seeding, a stand-alone pattern recognition algorithm aiming at finding charged particle trajectories for the LHCb upgrade. A significant improvement to the charged particle reconstruction efficiency is accomplished by exploiting the knowledge of the LHCb magnetic field and the position of energy deposits in the scintillating fibre tracker detector. Moreover, we achieve a low fake rate and a small contribution to the overall timing budget of the LHCb real-time data processing.
Address [Billoir, P.; Polci, F.; Quagliani, R.] Sorbonne Univ, Paris Diderot Sorbonne Paris Cite, LPNHE, CNRS IN2P3, Paris, France, Email: louis.henry@cern.ch;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4655 ISBN Medium
Area Expedition Conference
Notes WOS:000608243400007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4685
Permanent link to this record
 

 
Author Al Kharusi, S. et al; Colomer, M.
Title SNEWS 2.0: a next-generation supernova early warning system for multi-messenger astronomy Type Journal Article
Year 2021 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume 23 Issue 3 Pages 031201 - 34pp
Keywords (down) supernova neutrinos; multi-messenger astronomy; particle astrophysics
Abstract The next core-collapse supernova in the Milky Way or its satellites will represent a once-in-a-generation opportunity to obtain detailed information about the explosion of a star and provide significant scientific insight for a variety of fields because of the extreme conditions found within. Supernovae in our galaxy are not only rare on a human timescale but also happen at unscheduled times, so it is crucial to be ready and use all available instruments to capture all possible information from the event. The first indication of a potential stellar explosion will be the arrival of a bright burst of neutrinos. Its observation by multiple detectors worldwide can provide an early warning for the subsequent electromagnetic fireworks, as well as signal to other detectors with significant backgrounds so they can store their recent data. The supernova early warning system (SNEWS) has been operating as a simple coincidence between neutrino experiments in automated mode since 2005. In the current era of multi-messenger astronomy there are new opportunities for SNEWS to optimize sensitivity to science from the next galactic supernova beyond the simple early alert. This document is the product of a workshop in June 2019 towards design of SNEWS 2.0, an upgraded SNEWS with enhanced capabilities exploiting the unique advantages of prompt neutrino detection to maximize the science gained from such a valuable event.
Address [Al Kharusi, S.; Brunner, T.; Haggard, D.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada, Email: ahabig@d.umn.edu
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes WOS:000629947000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4756
Permanent link to this record
 

 
Author Fioresi, R.; Lledo, M.A.
Title Quantum Supertwistors Type Journal Article
Year 2021 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel
Volume 13 Issue 7 Pages 1241 - 16pp
Keywords (down) star products; superspace; non-commutative spacetime; quantum groups; quantum supergroups
Abstract In this paper, we give an explicit expression for a star product on the super-Minkowski space written in the supertwistor formalism. The big cell of the super-Grassmannian Gr(2|0,4|1) is identified with the chiral, super-Minkowski space. The super-Grassmannian is a homogeneous space under the action of the complexification SL(4|1) of SU(2,2|1), the superconformal group in dimension 4, signature (1,3), and supersymmetry N=1. The quantization is done by substituting the groups and homogeneous spaces by their quantum deformed counterparts. The calculations are done in Manin's formalism. When we restrict to the big cell, we can explicitly compute an expression for the super-star product in the Minkowski superspace associated to this deformation and the choice of a certain basis of monomials.
Address [Fioresi, Rita] Univ Bologna, Dipartimento Matemat, Piazza Porta San Donato 5, I-40126 Bologna, Italy, Email: fioresi@dm.unibo.it;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000677165600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4909
Permanent link to this record