Home | << 1 2 3 4 >> |
![]() |
Santos, A. C. L., Muniz, C. R., & Maluf, R. V. (2023). Yang-Mills Casimir wormholes in D=2+1. J. Cosmol. Astropart. Phys., 09(9), 022–24pp.
Abstract: This work presents new three-dimensional traversable wormhole solutions sourced by the Casimir density and pressures related to the quantum vacuum fluctuations in Yang-Mills (Y-M) theory. We begin by analyzing the noninteracting Y-M Casimir wormholes, initially considering an arbitrary state parameter omega and determine a simple constant wormhole shape function. Next, we introduce a new methodology for deforming the state parameter to find well-behaved redshift functions. The wormhole can be interpreted as a legitimate Casimir wormhole with an expected average state parameter of omega = 2. Then, we investigate the wormhole curvature properties, energy conditions, and stability. Furthermore, we discover a novel family of traversable wormhole solutions sourced by the quantum vacuum fluctuations of interacting Yang-Mills fields with a more complex shape function. Deforming the effective state parameter similarly, we obtain well-behaved redshift functions and traversable wormhole solutions. Finally, we examine the energy conditions and stability of solutions in the interacting scenario and compare to the noninteracting case.
|
Olmo, G. J., Rubiera-Garcia, D., & Sanchez-Puente, A. (2016). Impact of curvature divergences on physical observers in a wormhole space-time with horizons. Class. Quantum Gravity, 33(11), 115007–12pp.
Abstract: The impact of curvature divergences on physical observers in a black hole space-time, which, nonetheless, is geodesically complete is investigated. This space-time is an exact solution of certain extensions of general relativity coupled to Maxwell's electrodynamics and, roughly speaking, consists of two Reissner-Nordstrom (or Schwarzschild or Minkowski) geometries connected by a spherical wormhole near the center. We find that, despite the existence of infinite tidal forces, causal contact is never lost among the elements making up the observer. This suggests that curvature divergences may not be as pathological as traditionally thought.
Keywords: Singularities; black holes; metric-affine geometry
|
Casals, M., Fabbri, A., Martinez, C., & Zanelli, J. (2016). Quantum dress for a naked singularity. Phys. Lett. B, 760, 244–248.
Abstract: We investigate semiclassical backreaction on a conical naked singularity space-time with a negative cosmological constant in (2 + 1)-dimensions. In particular, we calculate the renormalized quantum stress-energy tensor for a conformally coupled scalar field on such naked singularity space-time. We then obtain the backreacted metric via the semiclassical Einstein equations. We show that, in the regime where the semiclassical approximation can be trusted, backreaction dresses the naked singularity with an event horizon, thus enforcing (weak) cosmic censorship.
|
Araujo Filho, A. A., Jusufi, K., Cuadros-Melgar, B., Leon, G., Jawad, A., & Pellicer, C. E. (2024). Charged black holes with Yukawa potential. Phys. Dark Universe, 46, 101711–16pp.
Abstract: This study derives a novel family of charged black hole solutions featuring short- and long-range modifications. These are achieved through a Yukawa-like gravitational potential modification and a nonsingular electric potential incorporation. The short-range corrections encode quantum gravity effects, while the long-range adjustments simulate gravitational effects akin to those attributed to dark matter. Our investigation reveals that the total mass of the black hole undergoes corrections owing to the apparent presence of dark matter mass and the self-adjusted electric charge mass. Two distinct solutions are discussed: a regular black hole solution characterizing small black holes, where quantum effects play a crucial role, and a second solution portraying large black holes at considerable distances, where the significance of Yukawa corrections comes into play. Notably, these long-range corrections contribute to an increase in the total mass and hold particular interest as they can emulate the role of dark matter. Finally, we explore the phenomenological aspects of the black hole. Specifically, we examine the influence of electric charge and Yukawa parameters on thermodynamic quantities, the quasinormal modes for the charged scalar perturbations as well as for the vector perturbations, analysis of the geodesics of light/massive particles, and the accretion of matter onto the charged black hole solution.
|
Araujo Filho, A. A., Jusufi, K., Cuadros-Melgar, B., & Leon, G. (2024). Dark matter signatures of black holes with Yukawa potential. Phys. Dark Universe, 44, 101500–20pp.
Abstract: This study uses a nonsingular Yukawa-modified potential to obtain a static and spherically symmetric black hole solution with a cosmological constant. Such Yukawa-like corrections are encoded in two parameters, alpha and lambda, that modify Newton's law of gravity in large distances, and a deformation parameter l(0), which plays an essential role in short distances. The most significant effect is encoded in alpha, which modifies the total black hole mass with an extra mass proportional to alpha M, mimicking the dark matter effects at large distances from the black hole. On the other hand, the effect due to lambda is small for astrophysical values. We scrutinize the quasinormal frequencies and shadows associated with a spherically symmetric black hole and the thermodynamical behavior influenced by the Yukawa potential. In particular, the thermodynamics of this black hole displays a rich behavior, including possible phase transitions. We use the WKB method to probe the quasinormal modes of massless scalar, electromagnetic, and gravitational field perturbations. In order to check the influence of the parameters on the shadow radius, we consider astrophysical data to determine their values, incorporating information on an optically thin radiating and infalling gas surrounding a black hole to model the black hole shadow image. In particular, we consider Sgr A* black hole as an example and we find that its shadow radius changes by order of 10(-9), meaning that the shadow radius of a black hole with Yukawa potential practically gives rise to the same result encountered in the Schwarzschild black hole. Also, in the eikonal regime, using astrophysical data for Yukawa parameters, we show that the value of the real part of the QNMs frequencies changes by 10(-18). Such Yukawa-like corrections are, therefore, difficult to measure by observations of gravitational waves using the current technology.
|
Balbinot, R., & Fabbri, A. (2023). The Hawking Effect in the Particles-Partners Correlations. Physics, 5(4), 968–982.
Abstract: We analyze the correlations functions across the horizon in Hawking black hole radiation to reveal the correlations between Hawking particles and their partners. The effects of the underlying space-time on this are shown in various examples ranging from acoustic black holes to regular black holes.
|
Fernandez-Silvestre, D., Foo, J., & Good, M. R. R. (2022). On the duality of Schwarzschild-de Sitter spacetime and moving mirror. Class. Quantum Gravity, 39(5), 055006–18pp.
Abstract: The Schwarzschild-de Sitter (SdS) metric is the simplest spacetime solution in general relativity with both a black hole event horizon and a cosmological event horizon. Since the Schwarzschild metric is the most simple solution of Einstein's equations with spherical symmetry and the de Sitter metric is the most simple solution of Einstein's equations with a positive cosmological constant, the combination in the SdS metric defines an appropriate background geometry for semi-classical investigation of Hawking radiation with respect to past and future horizons. Generally, the black hole temperature is larger than that of the cosmological horizon, so there is heat flow from the smaller black hole horizon to the larger cosmological horizon, despite questions concerning the definition of the relative temperature of the black hole without a measurement by an observer sitting in an asymptotically flat spacetime. Here we investigate the accelerating boundary correspondence of the radiation in SdS spacetime without such a problem. We have solved for the boundary dynamics, energy flux and asymptotic particle spectrum. The distribution of particles is globally non-thermal while asymptotically the radiation reaches equilibrium.
|
Villanueva-Domingo, P., Mena, O., & Palomares-Ruiz, S. (2021). A Brief Review on Primordial Black Holes as Dark Matter. Front. Astron. Space Sci., 8, 681084–10pp.
Abstract: Primordial black holes (PBHs) represent a natural candidate for one of the components of the dark matter (DM) in the Universe. In this review, we shall discuss the basics of their formation, abundance and signatures. Some of their characteristic signals are examined, such as the emission of particles due to Hawking evaporation and the accretion of the surrounding matter, effects which could leave an impact in the evolution of the Universe and the formation of structures. The most relevant probes capable of constraining their masses and population are discussed.
|
De Romeri, V., Perez-Gonzalez, Y. F., & Tolino, A. (2025). Primordial black hole probes of heavy neutral leptons. J. Cosmol. Astropart. Phys., 04(4), 018–35pp.
Abstract: Primordial black holes (PBH), while still constituting a viable dark matter component, are expected to evaporate through Hawking radiation. Assuming the semi-classical approximation holds up to near the Planck scale, PBHs are expected to evaporate by the present time, emitting a significant flux of particles in their final moments, if produced in the early Universe with an initial mass of similar to 10(15) g. These “exploding” black holes will release a burst of Standard Model particles alongside any additional degrees of freedom, should they exist. We explore the possibility that heavy neutral leptons (HNL), mixing with active neutrinos, are emitted in the final evaporation stages. We perform a multimessenger analysis. We calculate the expected number of active neutrinos from such an event, including contributions due to the HNL decay for different assumptions on the mixings, that could be visible in IceCube. We also estimate the number of gamma-ray events expected at HAWC. By combining the two signals, we infer sensitivities on the active-sterile neutrino mixing and on the sterile neutrino mass. We find that, for instance, for the scenario where U(tau)4 not equal 0, IceCube and HAWC could improve current constraints by a few orders of magnitude, for HNLs masses between 0.1-1 GeV, and a PBH explosion occurring at a distance of similar to 10(-4) pc from Earth.
|
Bernal, N., Munoz-Albornoz, V., Palomares-Ruiz, S., & Villanueva-Domingo, P. (2022). Current and future neutrino limits on the abundance of primordial black holes. J. Cosmol. Astropart. Phys., 10(10), 068–38pp.
Abstract: Primordial black holes (PBHs) formed in the early Universe are sources of neutrinos emitted via Hawking radiation. Such astrophysical neutrinos could be detected at Earth and constraints on the abundance of comet-mass PBHs could be derived from the null observation of this neutrino flux. Here, we consider non-rotating PBHs and improve constraints using Super-Kamiokande neutrino data, as well as we perform forecasts for next-generation neutrino (Hyper-Kamiokande, JUNO, DUNE) and dark matter (DARWIN, ARGO) detectors, which we compare. For PBHs less massive than " few x 1014 g, PBHs would have already evaporated by now, whereas more massive PBHs would still be present and would constitute a fraction of the dark matter of the Universe. We consider monochromatic and extended (log-normal) mass distributions, and a PBH mass range spanning from 1012 g to ti 1016 g. Finally, we also compare our results with previous ones in the literature.
Keywords: neutrino detectors; primordial black holes
|