toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Aguilar, A.C.; Binosi, D.; Papavassiliou, J. url  doi
openurl 
  Title Gluon mass through ghost synergy Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue 1 Pages 050 - 32pp  
  Keywords (up) Nonperturbative Effects; QCD  
  Abstract In this work we compute, at the “one-loop-dressed” level, the nonperturbative contribution of the ghost loops to the self-energy of the gluon propagator, in the Landau gauge. This is accomplished within the PT-BFM formalism, where the contribution of the ghost-loops is inherently transverse, by virtue of the QED-like Ward identities satisfied in this framework. At the level of the “one-loop dressed” approximation, the ghost transversality is preserved by employing a suitable gauge-technique Ansatz for the longitudinal part of the full ghost-gluon vertex. Under the key assumption that the undetermined transverse part of this vertex is numerically subleading in the infrared, and using as nonperturbative input the available lattice data for the ghost dressing function, we show that the ghost contributions have a rather sizable effect on the overall shape of the gluon propagator, both for d = 3, 4. Then, by exploiting a recently introduced dynamical equation for the effective gluon mass, whose solutions depend crucially on the characteristics of the gluon propagator at intermediate energies, we show that if the ghost loops are removed from the gluon propagator then the gluon mass vanishes. These findings suggest that, at least at the level of the Schwinger-Dyson equations, the effects of gluons and ghosts are inextricably connected, and must be combined suitably in order to reproduce the results obtained in the recent lattice simulations.  
  Address [Aguilar, A. C.] Fed Univ ABC, CCNH, BR-09210170 Santo Andre, Brazil, Email: arlene.aguilar@ufabc.edu.br  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000300181800050 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 969  
Permanent link to this record
 

 
Author Binosi, D.; Ibañez, D.; Papavassiliou, J. url  doi
openurl 
  Title Nonperturbative study of the four gluon vertex Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 059 - 32pp  
  Keywords (up) Nonperturbative Effects; QCD; Confinement  
  Abstract In this paper we study the nonperturbative structure of the SU(3) four-gluon vertex in the Landau gauge, concentrating on contributions quadratic in the metric. We employ an approximation scheme where “one-loop” diagrams are computed using fully dressed gluon and ghost propagators, and tree-level vertices. When a suitable kinematical configuration depending on a single momentum scale p is chosen, only two structures emerge: the tree-level four-gluon vertex, and a tensor orthogonal to it. A detailed numerical analysis reveals that the form factor associated with this latter tensor displays a change of sign (zero-crossing) in the deep infrared, and finally diverges logarithmically. The origin of this characteristic behavior is proven to be entirely due to the masslessness of the ghost propagators forming the corresponding ghost-loop diagram, in close analogy to a similar effect established for the three-gluon vertex. However, in the case at hand, and under the approximations employed, this particular divergence does not affect the form factor proportional to the tree-level tensor, which remains finite in the entire range of momenta, and deviates moderately from its naive tree-level value. It turns out that the kinematic configuration chosen is ideal for carrying out lattice simulations, because it eliminates from the connected Green's function all one-particle reducible contributions, projecting out the genuine one-particle irreducible vertex. Motivated by this possibility, we discuss in detail how a hypothetical lattice measurement of this quantity would compare to the results presented here, and the potential interference from an additional tensorial structure, allowed by Bose symmetry, but not encountered within our scheme.  
  Address [Binosi, D.; Ibanez, D.] European Ctr Theoret Studies Nucl Phys & Related, I-38123 Villazzano, TN, Italy, Email: binosi@ectstar.eu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000342215400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1954  
Permanent link to this record
 

 
Author Ayala, C.; Cvetic, G.; Kogerler, R. url  doi
openurl 
  Title Lattice-motivated holomorphic nearly perturbative QCD Type Journal Article
  Year 2017 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 44 Issue 7 Pages 075001 - 30pp  
  Keywords (up) perturbative QCD; lattice QCD; QCD phenomenology; resummation  
  Abstract Newer lattice results indicate that, in the Landau gauge at low spacelike momenta, the gluon propagator and the ghost dressing function are finite non-zero. This leads to a definition of the QCD running coupling, in a specific scheme, that goes to zero at low spacelike momenta. We construct a running coupling which fulfills these conditions, and at the same time reproduces to a high precision the perturbative behavior at high momenta. The coupling is constructed in such a way that it reflects qualitatively correctly the holomorphic (analytic) behavior of spacelike observables in the complex plane of the squared momenta, as dictated by the general principles of quantum field theories. Further, we require the coupling to reproduce correctly the nonstrange semihadronic decay rate of tau lepton which is the best measured low-momentum QCD observable with small higher-twist effects. Subsequent application of the Borel sum rules to the V + A spectral functions of tau lepton decays, as measured by OPAL Collaboration, determines the values of the gluon condensate and of the V + A six-dimensional condensate, and reproduces the data to a significantly higher precision than the usual (MS) over bar running coupling.  
  Address [Ayala, Cesar] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: Gorazd.Cvetic@usm.cl  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000402509800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3167  
Permanent link to this record
 

 
Author Qin, W.; Dai, L.Y.; Portoles, J. url  doi
openurl 
  Title Two and three pseudoscalar production in e(+)e(-) annihilation and their contributions to (g-2)(mu) Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 092 - 38pp  
  Keywords (up) Phenomenological Models; QCD Phenomenology  
  Abstract A coherent study of e(+)e(-) annihilation into two (pi(+)pi(-), K+K-) and three (pi(+)pi(-)pi(0), pi(+)pi(-)eta) pseudoscalar meson production is carried out within the framework of resonance chiral theory in energy region E less than or similar to 2 GeV. The work of [L.Y. Dai, J. Portoles, and O. Shekhovtsova, Phys. Rev. D88 (2013) 056001] is revisited with the latest experimental data and a joint analysis of two pseudoscalar meson production. Hence, we evaluate the lowest order hadronic vacuum polarization contributions of those two and three pseudoscalar processes to the anomalous magnetic moment of the muon. We also estimate some higher-order additions led by the same hadronic vacuum polarization. Combined with the other contributions from the standard model, the theoretical prediction differs still by (21.6 +/- 7.4) x 10(-10) (2.9 sigma) from the experimental value.  
  Address [Qin, Wen; Dai, Ling-Yun] Hunan Univ, Sch Phys & Elect, Changsha 410082, Peoples R China, Email: wqin@hnu.edu.cn;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000627781500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4764  
Permanent link to this record
 

 
Author Bordes, J.; Dominguez, C.A.; Moodley, P.; Peñarrocha, J.; Schilcher, K. url  doi
openurl 
  Title Chiral corrections to the SU(2) x SU(2) Gell-Mann-Oakes-Renner relation Type Journal Article
  Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 064 - 16pp  
  Keywords (up) QCD Phenomenology  
  Abstract The next to leading order chiral corrections to the SU(2) x SU(2) Gell-Mann-Oakes- Renner (GMOR) relation are obtained using the pseudoscalar correlator to five-loop order in perturbative QCD, together with new finite energy sum rules (FESR) incorporating polynomial, Legendre type, integration kernels. The purpose of these kernels is to suppress hadronic contributions in the region where they are least known. This reduces considerably the systematic uncertainties arising from the lack of direct experimental information on the hadronic resonance spectral function. Three different methods are used to compute the FESR contour integral in the complex energy (squared) s-plane, i.e. Fixed Order Perturbation Theory, Contour Improved Perturbation Theory, and a fixed renormalization scale scheme. We obtain for the corrections to the GMOR relation, delta(pi), the value delta(pi) = (6.2 +/- 1.6)%. This result is substantially more accurate than previous determinations based on QCD sum rules; it is also more reliable as it is basically free of systematic uncertainties. It implies a light quark condensate < 0 vertical bar(u) over baru vertical bar 0 > similar or equal to < 0 vertical bar(d) over bard vertical bar 0 > < 0 vertical bar(q) over barq vertical bar 0 >vertical bar(2GeV) = (-267 +/- 5MeV)(3). As a byproduct, the chiral perturbation theory (unphysical) low energy constant H-2(r) is predicted to be H-2(r)(nu(X) = M-p) = -(5.1 +/- 1.8) x10(-3), or H-2(r) (nu(X) = M-eta) = -(5.7 +/- 2.0) x10(-3).  
  Address [Bordes, J.; Penarrocha, J.] Univ Valencia, Dept Fis Teor, CSICE, E-46100 Burjassot, Spain, Email: bordes@uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000278250000044 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 434  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva