|   | 
Details
   web
Records
Author ATLAS Collaboration (Aad, G. et al); Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Cardillo, F.; Castillo, F.L.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Mamuzic, J.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Moreno Llacer, M.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rodriguez Bosca, S.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sayago Galvan, I.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M.
Title Measurements of sensor radiation damage in the ATLAS inner detector using leakage currents Type Journal Article
Year 2021 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 16 Issue 8 Pages P08025 - 46pp
Keywords (down) Radiation damage to detector materials (solid state); Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc)
Abstract Non-ionizing energy loss causes bulk damage to the silicon sensors of the ATLAS pixel and strip detectors. This damage has important implications for data-taking operations, charged-particle track reconstruction, detector simulations, and physics analysis. This paper presents simulations and measurements of the leakage current in the ATLAS pixel detector and semiconductor tracker as a function of location in the detector and time, using data collected in Run 1 (2010-2012) and Run 2 (2015-2018) of the Large Hadron Collider. The extracted fluence shows a much stronger vertical bar z vertical bar-dependence in the innermost layers than is seen in simulation. Furthermore, the overall fluence on the second innermost layer is significantly higher than in simulation, with better agreement in layers at higher radii. These measurements are important for validating the simulation models and can be used in part to justify safety factors for future detector designs and interventions.
Address [Duvnjak, D.; Jackson, P.; Kong, A. X. Y.; Oliver, J. L.; Ruggeri, T. A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000706929300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5004
Permanent link to this record
 

 
Author Bruschini, R.; Gonzalez, R.
Title A plausible explanation of Upsilon(10860) Type Journal Article
Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 791 Issue Pages 409-413
Keywords (down) Quark; Meson; Potential
Abstract We show that a good description of the Upsilon(10860) properties, in particular the mass, the e(+) e(-) leptonic widths and the pi(+) pi(-) Upsilon(ns) (n = 1, 2, 3) production rates, can be obtained under the assumption that Upsilon(10860) is a mixing of the conventional Upsilon(5s) quark model state with the lowest P-wave hybrid state.
Address [Bruschini, R.; Gonzalez, R.] Univ Valencia, CSIC, IFIC, Dept Fis Teor, Carrer Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: roberto.bruschini@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000462321800059 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3959
Permanent link to this record
 

 
Author Angles-Castillo, A.; Perez, A.; Roldan, E.
Title Bright and dark solitons in a photonic nonlinear quantum walk: lessons from the continuum Type Journal Article
Year 2024 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume 26 Issue 2 Pages 023004 - 16pp
Keywords (down) quantum walks; soliton; non-linear optics
Abstract We propose a nonlinear quantum walk model inspired in a photonic implementation in which the polarization state of the light field plays the role of the coin-qubit. In particular, we take profit of the nonlinear polarization rotation occurring in optical media with Kerr nonlinearity, which allows to implement a nonlinear coin operator, one that depends on the state of the coin-qubit. We consider the space-time continuum limit of the evolution equation, which takes the form of a nonlinear Dirac equation. The analysis of this continuum limit allows us to gain some insight into the existence of different solitonic structures, such as bright and dark solitons. We illustrate several properties of these solitons with numerical calculations, including the effect on them of an additional phase simulating an external electric field.
Address [Angles-Castillo, Andreu; Perez, Armando] Univ Valencia, Dept Fis Teor & IFIC, CSIC, Burjassot 46100, Valencia, Spain, Email: andreu.angles-castillo@uv.es
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes WOS:001156767400001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5929
Permanent link to this record
 

 
Author Jay, G.; Arnault, P.; Debbasch, F.
Title Dirac quantum walks with conserved angular momentum Type Journal Article
Year 2021 Publication Quantum Studies-Mathematics and Foundations Abbreviated Journal Quantum Stud. Math. Found.
Volume 8 Issue Pages 419-430
Keywords (down) Quantum walks; Quantum simulation; Lattice field theory
Abstract A quantum walk (QW) simulating the flat (1+2)D Dirac equation on a spatial polar grid is constructed. Because fermions are represented by spinors, which do not constitute a representation of the rotation group SO(3), but rather of its double cover SU(2), the QW can only be defined globally on an extended spacetime where the polar angle extends from 0 to 4 pi. The coupling of the QW with arbitrary electromagnetic fields is also presented. Finally, the cylindrical relativistic Landau levels of the Dirac equation are computed explicitly and simulated by the QW.
Address [Jay, Gareth] Univ Western Australia, Phys Dept, Perth, WA 6009, Australia, Email: gareth.jay@uwa.edu.au;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-5609 ISBN Medium
Area Expedition Conference
Notes WOS:000697709700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4975
Permanent link to this record
 

 
Author Nzongani, U.; Zylberman, J.; Doncecchi, C.E.; Perez, A.; Debbasch, F.; Arnault, P.
Title Quantum circuits for discrete-time quantum walks with position-dependent coin operator Type Journal Article
Year 2023 Publication Quantum Information Processing Abbreviated Journal Quantum Inf. Process.
Volume 22 Issue 7 Pages 270 - 46pp
Keywords (down) Quantum walks; Quantum circuits; Quantum simulation
Abstract The aim of this paper is to build quantum circuits that implement discrete-time quantum walks having an arbitrary position-dependent coin operator. The position of the walker is encoded in base 2: with n wires, each corresponding to one qubit, we encode 2(n) position states. The data necessary to define an arbitrary position-dependent coin operator is therefore exponential in n. Hence, the exponentiality will necessarily appear somewhere in our circuits. We first propose a circuit implementing the position-dependent coin operator, that is naive, in the sense that it has exponential depth and implements sequentially all appropriate position-dependent coin operators. We then propose a circuit that “transfers” all the depth into ancillae, yielding a final depth that is linear in n at the cost of an exponential number of ancillae. Themain idea of this linear-depth circuit is to implement in parallel all coin operators at the different positions. Reducing the depth exponentially at the cost of having an exponential number of ancillae is a goal which has already been achieved for the problem of loading classical data on a quantum circuit (Araujo in Sci Rep 11:6329, 2021) (notice that such a circuit can be used to load the initial state of the walker). Here, we achieve this goal for the problem of applying a position-dependent coin operator in a discrete-time quantum walk. Finally, we extend the result of Welch (New J Phys 16:033040, 2014) from position-dependent unitaries which are diagonal in the position basis to position-dependent 2 x 2-block-diagonal unitaries: indeed, we show that for a position dependence of the coin operator (the block-diagonal unitary) which is smooth enough, one can find an efficient quantum-circuit implementation approximating the coin operator up to an error epsilon (in terms of the spectral norm), the depth and size of which scale as O(1/epsilon). A typical application of the efficient implementation would be the quantum simulation of a relativistic spin-1/2 particle on a lattice, coupled to a smooth external gauge field; notice that recently, quantum spatial-search schemes have been developed which use gauge fields as the oracle, to mark the vertex to be found (Zylberman in Entropy 23:1441, 2021), (Fredon arXiv:2210.13920). A typical application of the linear-depth circuit would be when there is spatial noise on the coin operator (and hence a non-smooth dependence in the position).
Address [Nzongani, Ugo; Doncecchi, Carlo-Elia; Arnault, Pablo] Univ Paris Saclay, CNRS, INRIA, Lab Methodes Formelles,ENS Paris Saclay, F-91190 Gif Sur Yvette, France, Email: ugo.nzongani@universite-paris-saclay.fr;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1570-0755 ISBN Medium
Area Expedition Conference
Notes WOS:001022408900002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5587
Permanent link to this record
 

 
Author Araujo Filho, A.A.; Hassanabadi, H.; Reis, J.A.A.S.; Lisboa-Santos, L.
Title Thermodynamics of a quantum ring modified by Lorentz violation Type Journal Article
Year 2023 Publication Physica Scripta Abbreviated Journal Phys. Scr.
Volume 98 Issue 6 Pages 065943 - 13pp
Keywords (down) quantum ring; thermodynamic properties; Lorentz violation
Abstract In this work, we investigate the consequences of Lorentz-violating terms in the thermodynamic properties of a 1-dimensional quantum ring. In particular, we use the ensemble theory to obtain our results of interest. The thermodynamic functions as well as the spin currents are calculated as a function of the temperature. We observe that parameter xi, which triggers the Lorentz symmetry breaking, plays a major role in low temperature regime. Finally, depending on the configuration of the system, electrons can rotate in two different directions: clockwise and counterclockwise.
Address [Araujo Filho, A. A.] Univ Valencia, Ctr Mixto, Dept Fis Teor, CSIC, Valencia 46100, Spain, Email: dilto@fisica.ufc.br;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8949 ISBN Medium
Area Expedition Conference
Notes WOS:000989669300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5556
Permanent link to this record
 

 
Author Biagi, N.; Francesconi, S.; Gessner, M.; Bellini, M.; Zavatta, A.
Title Remote Phase Sensing by Coherent Single Photon Addition Type Journal Article
Year 2022 Publication Advanced Quantum Technologies Abbreviated Journal Adv. Quantum Technol.
Volume 5 Issue 12 Pages 2200039 - 9pp
Keywords (down) quantum optics; quantum state engineering; remote quantum sensing
Abstract A remote phase sensing scheme is proposed, inspired by the high sensitivity of the entanglement produced by coherent multimode photon addition on the phase set in the remote heralding apparatus. By exploring the case of delocalized photon addition over two modes containing identical coherent states, the optimal observable to perform remote phase estimation from heralded quadrature measurements is derived. The technique is experimentally tested with calibration measurements and then used for estimating a remote phase with a sensitivity that is found to scale with the intensity of the local coherent states, which never interacted with the sample.
Address [Biagi, Nicola; Francesconi, Saverio; Bellini, Marco; Zavatta, Alessandro] Ist Nazl Ott CNR INO, Lgo E Fermi 6, I-50125 Florence, Italy, Email: marco.bellini@ino.cnr.it;
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000865838800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5378
Permanent link to this record
 

 
Author Fadel, M.; Yadin, B.; Mao, Y.P.; Byrnes, T.; Gessner, M.
Title Multiparameter quantum metrology and mode entanglement with spatially split nonclassical spin ensembles Type Journal Article
Year 2023 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume 25 Issue 7 Pages 073006 - 25pp
Keywords (down) quantum metrology; Bose-Einstein condensates; spin-squeezing; Fisher information matrix; mode and particle entanglement
Abstract We identify the multiparameter sensitivity of entangled spin states, such as spin-squeezed and Dicke states that are spatially distributed into several addressable spatial modes. Analytical expressions for the spin-squeezing matrix of families of states that are accessible by current atomic experiments reveal the quantum gain in multiparameter metrology, as well as the optimal strategies to maximize the sensitivity gain for the estimation of any linear combination of parameters. We further study the mode entanglement of these states by deriving a witness for genuine k-partite mode entanglement from the spin-squeezing matrix. Our results highlight the advantage of mode entanglement for distributed sensing, and outline optimal protocols for multiparameter estimation with nonclassical spatially-distributed spin ensembles. We illustrate our findings with the design of a protocol for gradient sensing with a Bose-Einstein condensate in an entangled spin state in two modes.
Address [Fadel, Matteo] Swiss Fed Inst Technol, Dept Phys, CH-8093 Zurich, Switzerland, Email: fadelm@phys.ethz.ch;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes WOS:001026518600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5582
Permanent link to this record
 

 
Author Balbinot, R.; Fabbri, A.
Title The Hawking Effect in the Particles-Partners Correlations Type Journal Article
Year 2023 Publication Physics Abbreviated Journal Physics
Volume 5 Issue 4 Pages 968-982
Keywords (down) quantum fields in curved space; black holes; Hawking radiation; correlations across the horizon
Abstract We analyze the correlations functions across the horizon in Hawking black hole radiation to reveal the correlations between Hawking particles and their partners. The effects of the underlying space-time on this are shown in various examples ranging from acoustic black holes to regular black holes.
Address [Balbinot, Roberto] Univ Bologna, Dipartimento Fis, Via Irnerio 46, I-40126 Bologna, Italy, Email: roberto.balbinot@unibo.it;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001130983900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5858
Permanent link to this record
 

 
Author Delhom, A.; Olmo, G.J.; Singh, P.
Title A diffeomorphism invariant family of metric-affine actions for loop cosmologies Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 059 - 21pp
Keywords (down) quantum cosmology; modified gravity; cosmic singularity
Abstract In loop quantum cosmology (LQC) the big bang singularity is generically resolved by a big bounce. This feature holds even when modified quantization prescriptions of the Hamiltonian constraint are used such as in mLQC-I and mLQC-II. While the later describes an effective description qualitatively similar to that of standard LQC, the former describes an asymmetric evolution with an emergent Planckian de-Sitter pre-bounce phase even in the absence of a potential. We consider the potential relation of these canonically quantized non-singular models with effective actions based on a geometric description. We find a 3-parameter family of metric-affine f (R) theories which accurately approximate the effective dynamics of LQC and mLQC-II in all regimes and mLQC-I in the post-bounce phase. Two of the parameters are fixed by enforcing equivalence at the bounce, and the background evolution of the relevant observables can be fitted with only one free parameter. It is seen that the non-perturbative effects of these loop cosmologies are universally encoded by a logarithmic correction that only depends on the bounce curvature of the model. In addition, we find that the best fit value of the free parameter can be very approximately written in terms of fundamental parameters of the underlying quantum description for the three models. The values of the best fits can be written in terms of the bounce density in a simple manner, and the values for each model are related to one another by a proportionality relation involving only the Barbero-Immirzi parameter.
Address [Delhom, Adria; Singh, Parampreet] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA, Email: adria.delhom@gmail.com;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001025410500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5583
Permanent link to this record