toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cepedello, R.; Esser, F.; Hirsch, M.; Sanz, V. url  doi
openurl 
  Title SMEFT goes dark: Dark Matter models for four-fermion operators Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 081 - 47pp  
  Keywords (down) SMEFT; Dark Matter at Colliders; Specific BSM Phenomenology  
  Abstract We study ultra-violet completions for d = 6 four-fermion operators in the standard model effective field theory (SMEFT), focusing on models that contain cold dark matter candidates. Via a diagrammatic method, we generate systematically lists of possible UV completions, with the aim of providing sets of models, which are complete under certain, well specified assumptions. Within these lists of models we rediscover many known DM models, as diverse as R-parity conserving supersymmetry or the scotogenic neutrino mass model. Our lists, however, also contain many new constructions, which have not been studied in the literature so far. We also briefly discuss how our DM models could be constrained by reinterpretations of LHC searches and the prospects for HL-LHC and future lepton colliders.  
  Address [Cepedello, Ricardo] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany, Email: ricardo.cepedello@physik.uni-wuerzburg.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001067194100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5688  
Permanent link to this record
 

 
Author Park, B.Y.; Paeng, W.G.; Vento, V. url  doi
openurl 
  Title The inhomogeneous phase of dense skyrmion matter Type Journal Article
  Year 2019 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A  
  Volume 989 Issue Pages 231-245  
  Keywords (down) Skyrmion; Dense matter; Phase transition  
  Abstract It was predicted qualitatively in ref. [I] that skyrmion matter at low density is stable in an inhomogeneous phase where skyrmions condensate into lumps while the remaining space is mostly empty. The aim of this paper is to proof quantitatively this prediction. In order to construct an inhomogeneous medium we distort the original FCC crystal to produce a phase of planar structures made of skyrmions. We implement mathematically these planar structures by means of the 't Hooft instanton solution using the Atiyah-Manton ansatz. The results of our calculation of the average density and energy confirm the prediction suggesting that the phase diagram of the dense skyrmion matter is a lot more complex than a simple phase transition from the skyrmion FCC crystal lattice to the half-skyrmion CC one. Our results show that skyrmion matter shares common properties with standard nuclear matter developing a skin and leading to a binding energy equation which resembles the Weiszacker mass formula.  
  Address [Park, Byung-Yoon] Chungnam Natl Univ, Dept Phys, Daejon 305764, South Korea, Email: bypark@cnu.ac.kr;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-9474 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000478705300016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4098  
Permanent link to this record
 

 
Author Gimenez-Alventosa, V.; Gimenez, V.; Ballester, F.; Vijande, J.; Andreo, P. doi  openurl
  Title Correction factors for ionization chamber measurements with the 'Valencia' and 'large field Valencia' brachytherapy applicators Type Journal Article
  Year 2018 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 63 Issue 12 Pages 125004 - 10pp  
  Keywords (down) skin applicator; Valencia applicator; large field Valencia applicator; HDR brachytherap; brachytherapy dosimetry; Monte Carlo  
  Abstract Treatment of small skin lesions using HDR brachytherapy applicators is a widely used technique. The shielded applicators currently available in clinical practice are based on a tungsten-alloy cup that collimates the source-emitted radiation into a small region, hence protecting nearby tissues. The goal of this manuscript is to evaluate the correction factors required for dose measurements with a plane-parallel ionization chamber typically used in clinical brachytherapy for the 'Valencia' and 'large field Valencia' shielded applicators. Monte Carlo simulations have been performed using the PENELOPE-2014 system to determine the absorbed dose deposited in a water phantom and in the chamber active volume with a Type A uncertainty of the order of 0.1%. The average energies of the photon spectra arriving at the surface of the water phantom differ by approximately 10%, being 384 keV for the 'Valencia' and 343 keV for the 'large field Valencia'. The ionization chamber correction factors have been obtained for both applicators using three methods, their values depending on the applicator being considered. Using a depth-independent global chamber perturbation correction factor and no shift of the effective point of measurement yields depth-dose differences of up to 1% for the 'Valencia' applicator. Calculations using a depth-dependent global perturbation factor, or a shift of the effective point of measurement combined with a constant partial perturbation factor, result in differences of about 0.1% for both applicators. The results emphasize the relevance of carrying out detailed Monte Carlo studies for each shielded brachytherapy applicator and ionization chamber.  
  Address [Gimenez-Alventosa, V.] Univ Politecn Valencia, CSIC, Ctr Mixto, Inst Instrumentac Imagen Mol I3M, E-46022 Valencia, Spain, Email: Javier.vijande@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000434682500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3609  
Permanent link to this record
 

 
Author Helling, C. et al; Bernabeu, J.; Lacasta, C.; Solaz, C. doi  openurl
  Title Strip sensor performance in prototype modules built for ATLAS ITk Type Journal Article
  Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 978 Issue Pages 164402 - 6pp  
  Keywords (down) Silicon strip sensors; Strip module; Inter-strip isolation; Readout noise  
  Abstract ATLAS experiment is preparing an upgrade of its detector for High-Luminosity LHC (HL-LHC) operation. The upgrade involves installation of the new all-silicon Inner Tracker (ITk). In the context of the ITk preparations, more than 80 strip modules were built with prototype barrel sensors. They were tested with electrical readout on a per-channel basis. In general, an excellent performance was observed, consistent with previous ASIC-level and sensor-level tests. However, the lessons learned included two phenomena important for the future phases of the project. First was the need to store and test the modules in a dry environment due to humidity sensitivity of the sensors. The second was an observation of high noise regions for 2 modules. The high noise regions were tested further in several ways, including monitoring the performance as a function of time and bias voltage. Additionally, direct sensor-level tests were performed on the affected channels. The inter-strip resistance and bias resistance tests showed low values, indicating a temporary loss of the inter-strip isolation. A subsequent recovery of the noise performance was observed. We present the test details, an analysis of how the inter-strip isolation affects the module noise, and the relationship with sensor-level quality control tests.  
  Address [Helling, C.; Affolder, A. A.; Fadeyev, V.; Galloway, Z.; Gignac, M.; Gunnell, J.; Martinez-Mckinney, F.; Kang, N.; Yarwick, J.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA, Email: fadeyev@ucsc.edu  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000560076700015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4505  
Permanent link to this record
 

 
Author Andricek, L. et al; Lacasta, C.; Marinas, C.; Vos, M. doi  openurl
  Title Intrinsic resolutions of DEPFET detector prototypes measured at beam tests Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 638 Issue 1 Pages 24-32  
  Keywords (down) Silicon pixel detector; Detector resolution; Spatial resolution; DEPFET; Beam test  
  Abstract The paper is based on the data of the 2009 DEPFET beam test at CERN SPS. The beam test used beams of pions and electrons with energies between 40 and 120 GeV, and the sensors tested were prototypes with thickness of 450 μm and pixel pitch between 20 and 32 μm. Intrinsic resolutions of the detectors are calculated by disentangling the contributions of measurement errors and multiple scattering in tracking residuals. Properties of the intrinsic resolution estimates and factors that influence them are discussed. For the DEPFET detectors in the beam test, the calculation yields intrinsic resolutions of approximate to 1 μm, with a typical accuracy of 0.1 μm. Bias scan, angle scan, and energy scan are used as example studies to show that the intrinsic resolutions are a useful tool in studies of detector properties. With sufficiently precise telescopes, detailed resolution maps can be constructed and used to study and optimize detector performance.  
  Address [Dolezal, Z.; Drasal, Z.; Kodys, P.; Kvasnicka, P.; Malina, L.; Scheirich, J.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, CR-18000 Prague, Czech Republic, Email: peter.kodys@mff.cuni.cz  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000290082600005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 618  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva