toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author NEXT Collaboration (Martinez-Lema, G. et al); Palmeiro, B.; Botas, A.; Laing, A.; Renner, J.; Simon, A.; Alvarez, V.; Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Kekic, M.; Lopez-March, N.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Perez, J.; Querol, M.; Rodriguez, J.; Romo-Lugue, C.; Sorel, M.; Torrent, J.; Yahlali, N. url  doi
openurl 
  Title Calibration of the NEXT-White detector using Kr-83m decays Type Journal Article
  Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 13 Issue Pages P10014 - 21pp  
  Keywords (up) Charge transport; multiplication and electroluminescence in rare gases and liquids; Gaseous imaging and tracking detectors; Time projection Chambers (TPC); Double-beta decay detectors  
  Abstract The NEXT-White (NEW) detector is currently the largest radio-pure high-pressure xenon gas time projection chamber with electroluminescent readout in the world. It has been operating at Laboratorio Subterraneo de Canfranc (LSC) since October 2016. This paper describes the calibrations performed using Kr-83m decays during a long run taken from March to November 2017 (Run II). Krypton calibrations are used to correct for the finite drift-electron lifetime as well as for the dependence of the measured energy on the event transverse position which is caused by variations in solid angle coverage both for direct and reflected light and edge effects. After producing calibration maps to correct for both effects we measure an excellent energy resolution for 41.5 keV point-like deposits of (4.553 +/- 0.010 (stat.) +/- 0.324 (sys.)) % FWHM in the full chamber and (3.804 +/- 0.013 (stat.) +/- 0.112 (sys.)) % FWHM in a restricted fiducial volume. Using naive 1/root E scaling, these values translate into resolutions of (0.5916 +/- 0.0014 (stat.) +/- 0.0421 (sys.)) % FWHM and (0.4943 +/- 0.0017 (stat.) +/- 0.0146 (sys.)) % FWHM at the Q(beta beta) energy of xenon double beta decay (2458 keV), well within range of our target value of 1%.  
  Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: gonzalo.martinez.lema@usc.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000447061800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3754  
Permanent link to this record
 

 
Author Romanets, O.; Tolos, L.; Garcia-Recio, C.; Nieves, J.; Salcedo, L.L.; Timmermans, R. url  doi
openurl 
  Title Heavy-quark spin symmetry for charmed and strange baryon resonances Type Journal Article
  Year 2013 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A  
  Volume 914 Issue Pages 488-493  
  Keywords (up) Charm; Heavy-quark spin symmetry; Dynamically generated baryon resonances  
  Abstract We study charmed and strange odd-parity baryon resonances that are generated dynamically by a unitary baryon-meson coupled-channels model which incorporates heavy-quark spin symmetry. This is accomplished by extending the SU(3) Weinberg-Tomozawa chiral Lagrangian to SU(8) spin-flavor symmetry plus a suitable symmetry breaking. The model generates resonances with negative parity from the s-wave interaction of pseudoscalar and vector mesons with 1/2(+) and 3/2(+) baryons in all the isospin, spin, and strange sectors with one, two, and three charm units. Some of our results can be identified with experimental data from several facilities, such as the CLEO, Belle, or BaBar Collaborations, as well as with other theoretical models, whereas others do not have a straightforward identification and require the compilation of more data and also a refinement of the model. (c) 2013 Elsevier B.V. All rights reserved.  
  Address [Romanets, Olena; Timmermans, Rob] Univ Groningen, Theory Grp, KVI, NL-9747 AA Groningen, Netherlands, Email: o.romanets@rug.nl  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-9474 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000324847700069 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1601  
Permanent link to this record
 

 
Author Debastiani, V.R.; Liang, W.H.; Xie, J.J.; Oset, E. url  doi
openurl 
  Title Predictions for eta(c) -> eta pi(+)pi(-) producing f(0)(500), f(0)(980) and a(0)(980) Type Journal Article
  Year 2017 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 766 Issue Pages 59-64  
  Keywords (up) Charmonium decays; Scalar meson states; Dynamically generated resonances  
  Abstract We perform calculations for the eta(c) -> eta pi(+)pi(-) decay using elements of SU(3) symmetry to see the weight of different trios of pseudoscalars produced in this decay, prior to the final state interaction of the mesons. After that, the interaction of pairs of mesons, leading finally to eta pi(+)pi(-), is done using the chiral unitary approach. We evaluate the pi(+)pi(-) and pi eta mass distributions and find large and clear signals for f(0)(500), f(0)(980) and a(0)(980) excitation. The reaction is similar to the chi(c1) -> eta pi(+)pi(-), which has been recently measured at BESIII and its implementation and comparison with these predictions will be very valuable to shed light on the nature of the low mass scalar mesons.  
  Address [Debastiani, V. R.; Xie, Ju-Jun; Oset, E.] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Gansu, Peoples R China, Email: vinicius.rodrigues@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000427059300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3513  
Permanent link to this record
 

 
Author Gomez-Cadenas, J.J.; Benlloch-Rodriguez, J.M.; Ferrario, P. url  doi
openurl 
  Title Monte Carlo study of the coincidence resolving time of a liquid xenon PET scanner, using Cherenkov radiation Type Journal Article
  Year 2017 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 12 Issue Pages P08023 - 13pp  
  Keywords (up) Cherenkov and transition radiation; Gamma camera; SPECT; PET PET/CT; coronary CT angiography (CTA); Noble liquid detectors (scintillation, ionization, double-phase); Photon detectors for UV; visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs, CCDs, EBCCDs, EMCCDs etc)  
  Abstract In this paper we use detailed Monte Carlo simulations to demonstrate that liquid xenon (LXe) can be used to build a Cherenkov-based TOF-PET, with an intrinsic coincidence resolving time (CRT) in the vicinity of 10 ps. This extraordinary performance is due to three facts: a) the abundant emission of Cherenkov photons by liquid xenon; b) the fact that LXe is transparent to Cherenkov light; and c) the fact that the fastest photons in LXe have wavelengths higher than 300 nm, therefore making it possible to separate the detection of scintillation and Cherenkov light. The CRT in a Cherenkov LXe TOF-PET detector is, therefore, dominated by the resolution (time jitter) introduced by the photosensors and the electronics. However, we show that for sufficiently fast photosensors (e.g, an overall 40 ps jitter, which can be achieved by current micro-channel plate photomultipliers) the overall CRT varies between 30 and 55 ps, depending on the detection efficiency. This is still one order of magnitude better than commercial CRT devices and improves by a factor 3 the best CRT obtained with small laboratory prototypes.  
  Address [Ferrario, P.] CSIC, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: paola.ferrario@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000414160300006 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3347  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Valls, P.; Ruiz Vidal, J.; Sanchez Mayordomo, C. url  doi
openurl 
  Title Measurement of CP asymmetry in B-s(0) -> (DsK +/-)-K-/+ decays Type Journal Article
  Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 059 - 28pp  
  Keywords (up) CKM angle gamma; CP violation; B physics; Flavor physics; Hadron-Hadron scattering (experiments)  
  Abstract We report the measurements of the CP-violating parameters in B-s(0) -> (DsK +/-)-K--/+ decays observed in pp collisions, using a data set corresponding to an integrated luminosity of 3.0 fb(-1) recorded with the LHCb detector. We measure C-f = 0.73 +/- 0.14 +/- 0.05, A(f)(Delta Gamma) = 0.39 +/- 0.28 +/- 0.15, A(<(f)over) (Delta Gamma)(bar>) = 0.31 +/- 0.28 +/- 0.15, S-f = -0.52 +/- 0.20 +/- 0.07, S-(f) over bar = -0.49 +/- 0.20 +/- 0.07, where the uncertainties are statistical and systematic, respectively. These parameters are used together with the world-average value of the B-s(0) mixing phase, -2 beta(s), to obtain a measurement of the CKM angle gamma from B-s(0) -> (DsK +/-)-K--/+ decays, yielding gamma – (128 (+17)(-22))degrees modulo 180 degrees, where the uncertainty contains both statistical and systematic contributions. This corresponds to 3.8 sigma evidence for CP violation in the interference between decay and decay after mixing.  
  Address [Bediaga, I.; Cruz Torres, M.; De Miranda, J. M.; Gomes, A.; Massafferri, A.; Molina Rodriguez, J.; dos Reis, A. C.; Soares Lavra, L.; Tourinho Jadallah Aoude, R.] CBPF, Rio De Janeiro, Brazil, Email: giulia.tellarini@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000428689300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3539  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva