|   | 
Details
   web
Records
Author Watanabe, H. et al; Montaner-Piza, A.
Title Impact of shell evolution on Gamow-Teller beta decay from a high-spin long-lived isomer in Ag-127 Type Journal Article
Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 823 Issue Pages 136766 - 6pp
Keywords (down) Shell evolution; Gamow-Teller beta decay; Isomer; Ag-127; Radioactive isotope beam
Abstract The change of the shell structure in atomic nuclei, so-called “nuclear shell evolution”, occurs due to changes of major configurations through particle-hole excitations inside one nucleus, as well as due to variation of the number of constituent protons or neutrons. We have investigated how the shell evolution affects Gamow-Teller (GT) transitions that dominate the beta decay in the region below Sn-132 using the newly obtained experimental data on a long-lived isomer in Ag-127. The T-1/2 = 67.5(9) ms isomer has been identified with a spin and parity of (27/2(+)) at an excitation energy of 1942(-20)(+14) keV, and found to decay via an internal transition of an E3 character, which competes with the dominant beta-decay branches towards the high-spin states in Cd-127. The underlying mechanism of a strong GT transition from the Ag-127 isomer is discussed in terms of configuration-dependent optimization of the effective single-particle energies in the framework of a shell-model approach.
Address [Watanabe, H.] Beihang Univ, Sch Phys, Beijing 100191, Peoples R China, Email: hiroshi@ribf.riken.jp
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000719296400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5041
Permanent link to this record
 

 
Author Cirigliano, V.; Diaz-Calderon, D.; Falkowski, A.; Gonzalez-Alonso, M.; Rodriguez-Sanchez, A.
Title Semileptonic tau decays beyond the Standard Model Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 152 - 61pp
Keywords (down) Semi-Leptonic Decays; Specific BSM Phenomenology
Abstract Hadronic tau decays are studied as probe of new physics. We determine the dependence of several inclusive and exclusive tau observables on the Wilson coefficients of the low-energy effective theory describing charged-current interactions between light quarks and leptons. The analysis includes both strange and non-strange decay channels. The main result is the likelihood function for the Wilson coefficients in the tau sector, based on the up-to-date experimental measurements and state-of-the-art theoretical techniques. The likelihood can be readily combined with inputs from other low-energy precision observables. We discuss a combination with nuclear beta, baryon, pion, and kaon decay data. In particular, we provide a comprehensive and model-independent description of the new physics hints in the combined dataset, which are known under the name of the Cabibbo anomaly.
Address [Cirigliano, Vincenzo] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA, Email: cirigv@uw.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000788323700004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5216
Permanent link to this record
 

 
Author Navarro-Salas, J.; Pla, S.
Title Particle Creation and the Schwinger Model Type Journal Article
Year 2022 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel
Volume 14 Issue 11 Pages 2435 - 9pp
Keywords (down) Schwinger model; semiclassical theory; particle creation
Abstract We study the particle creation process in the Schwinger model coupled with an external classical source. One can approach the problem by taking advantage of the fact that the full quantized model is solvable and equivalent to a (massive) gauge field with a non-local effective action. Alternatively, one can also face the problem by following the standard semiclassical route. This means quantizing the massless Dirac field and considering the electromagnetic field as a classical background. We evaluate the energy created by a generic, homogeneous, and time-dependent source. The results match exactly in both approaches. This proves in a very direct and economical way the validity of the semiclassical approach for the (massless) Schwinger model, in agreement with a previous analysis based on the linear response equation. Our discussion suggests that a similar analysis for the massive Schwinger model could be used as a non-trivial laboratory to confront a fully quantized solvable model with its semiclassical approximation, therefore mimicking the long-standing confrontation of quantum gravity with quantum field theory in curved spacetime.
Address [Navarro-Salas, Jose] Univ Valencia, Ctr Mixto Univ Valencia CSIC, Fac Fis, Dept Fis Teor & IFIC, Burjassot 46100, Valencia, Spain, Email: jnavarro@ific.uv.es
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000895122100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5432
Permanent link to this record
 

 
Author Driencourt-Mangin, F.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J.
Title Universal four-dimensional representation of H -> gamma gamma at two loops through the Loop-Tree Duality Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 143 - 39pp
Keywords (down) Scattering Amplitudes; Higgs Physics; Perturbative QCD
Abstract We extend useful properties of the H unintegrated dual amplitudes from one- to two-loop level, using the Loop-Tree Duality formalism. In particular, we show that the universality of the functional form regardless of the nature of the internal particle still holds at this order. We also present an algorithmic way to renormalise two-loop amplitudes, by locally cancelling the ultraviolet singularities at integrand level, thus allowing a full four-dimensional numerical implementation of the method. Our results are compared with analytic expressions already available in the literature, finding a perfect numerical agreement. The success of this computation plays a crucial role for the development of a fully local four-dimensional framework to compute physical observables at Next-to-Next-to Leading order and beyond.
Address [Driencourt-Mangin, Felix; Rodrigo, German; Sborlini, German F. R.; Bobadilla, William J. Torres] Univ Valencia, CSIC, IFIC, Apt Correus 22085, E-46071 Valencia, Spain, Email: felix.dm@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000459485300005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3922
Permanent link to this record
 

 
Author Faleiro, R.; Pavao, R.; Costa, H.A.S.; Hiller, B.; Blin, A.H.; Sampaio, M.
Title Perturbative approach to entanglement generation in QFT using the S matrix Type Journal Article
Year 2020 Publication Journal of Physics A Abbreviated Journal J. Phys. A
Volume 53 Issue 36 Pages 365301 - 19pp
Keywords (down) S-matrix; entanglement; QFT; cross-section
Abstract We compute the variation of the von Neumann (VN) entropy Delta Sbetween the asymptoticinandoutmomenta modes of a real scalar field A, when elastically scattered against the modes of another scalar field B. This is done to see how the entanglement between the two fields' momenta changes under the scattering procedure. The calculation is separated into two case studies, one where the fields' asymptoticinstates are separable, and another where they are arbitrarily entangled. We perform a perturbative calculation to one loop order in the separable case, and verify that Delta Schanges in a non-trivial way when we vary the momentum of the incoming field modes and/or the coupling of the theory. Finally, also in the separable case, we show an explicit dependence between Delta Sand the cross-section of the collision, consistent with perturbation theory.
Address [Faleiro, Ricardo; Hiller, Brigitte] Univ Lisbon, Dept Math, Ave Rovisco Pais, P-1049001 Lisbon, Portugal, Email: ricardofaleiro@tecnico.ulisboa.pt
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1751-8113 ISBN Medium
Area Expedition Conference
Notes WOS:000563486000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4511
Permanent link to this record