|   | 
Details
   web
Records
Author Racker, J.
Title Mass bounds for baryogenesis from particle decays and the inert doublet model Type Journal Article
Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 025 - 23pp
Keywords (down) leptogenesis; baryon asymmetry
Abstract In models for thermal baryogenesis from particle decays, the mass of the decaying particle is typically many orders of magnitude above the TeV scale. We will discuss different ways to lower the energy scale of baryogenesis and present the corresponding lower bounds on the particle's mass. This is done specifically for the inert doublet model with heavy Majorana neutrinos and then we indicate how to extrapolate the results to other scenarios. We also revisit the question of whether or not dark matter, neutrino masses, and the cosmic baryon asymmetry can be explained simultaneously at low energies in the inert doublet model.
Address Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Valencia 46071, Spain, Email: racker@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000333667900025 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1744
Permanent link to this record
 

 
Author Pallis, C.; Shafi, Q.
Title Gravity waves from non-minimal quadratic inflation Type Journal Article
Year 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 023 - 31pp
Keywords (down) inflation; supersymmetry and cosmology; cosmology of theories beyond the SM
Abstract We discuss non-minimal quadratic inflation in supersymmetric (SUSY) and non-SUSY models which entails a linear coupling of the inflaton to gravity. Imposing a lower bound on the parameter c(R), involved in the coupling between the inflaton and the Ricci scalar curvature, inflation can be attained even for subplanckian values of the inflaton while the corresponding effective theory respects the perturbative unitarity up to the Planck scale. Working in the non-SUSY context we also consider radiative corrections to the inflationary potential due to a possible coupling of the inflaton to bosons or fermions. We find ranges of the parameters, depending mildly on the renormalization scale, with adjustable values of the spectral index n(s), tensor-to-scalar ratio r similar or equal to (2 – 4) . 10(-3), and an inflaton mass close to 3 . 10 (13) GeV. In the SUSY framework we employ two gauge singlet chiral superfields, a logarithmic Kahler potential including all the allowed terms up to fourth order in powers of the various fields, and determine uniquely the superpotential by applying a continuous R and a global U(1) symmetry. When the Kahler manifold exhibits a no-scale-type symmetry, the model predicts n(s) similar or equal to 0.963 and r similar or equal to 0.004. Beyond no-scale SUGRA, n(s) and r depend crucially on the coefficient involved in the fourth order term, which mixes the inflaton with the accompanying non-inflaton field in the Kahler potential, and the prefactor encountered in it. Increasing slightly the latter above (-3), an efficient enhancement of the resulting r can be achieved putting it in the observable range. The inflaton mass in the last case is confined in the range (5 – 9) . 10(13) GeV.
Address [Pallis, Constantinos] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: cpallis@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000355633800023 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2263
Permanent link to this record
 

 
Author Pallis, C.
Title Induced-gravity in inflation no-scale supergravity and beyond Type Journal Article
Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue 8 Pages 057 - 20pp
Keywords (down) inflation; supersymmetry and cosmology
Abstract Supersymmetric versions of induced-gravity inflation are formulated within Supergravity (SUGRA) employing two gauge singlet chiral super fields. The proposed super-potential is uniquely determined by applying a continuous R and a discrete Z(n) symmetry. We select two types of logarithmic Kahler potentials, one associated with a no-scale-type SU(2, 1)/SU(2) x U(1)(R) x Z(n) Kahler manifold and one more generic. In both cases, imposing a lower bound on the parameter c R involved in the coupling between the inflaton and the Ricci scalar curvature – e.g. c(R) greater than or similar to 76, 105, 310 for n – 2, 3 and 6 respectively -, inflation can be attained even for subplanckian values of the inflaton while the corresponding effective theory respects the perturbative unitarity. In the case of no-scale SUGRA we show that, for every n, the inflationary observables remain unchanged and in agreement with the current data while the inflaton mass is predicted to be 3 . 10(13) GeV. Beyond no-scale SUGRA the inflationary observables depend mildly on n and crucially on the coefficient involved in the fourth order term of the Kahler potential which mixes the inflaton with the accompanying non-inflaton field.
Address [Pallis, C.] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: kpallis@gen.auth.gr
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000341848800057 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1944
Permanent link to this record
 

 
Author Figueroa, D.G.; Raatikainen, S.; Rasanen, S.; Tomberg, E.
Title Implications of stochastic effects for primordial black hole production in ultra-slow-roll inflation Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue 5 Pages 027 - 48pp
Keywords (down) inflation; primordial black holes; dark matter theory; massive black holes
Abstract We study the impact of stochastic noise on the generation of primordial black hole (PBH) seeds in ultra-slow-roll (USR) inflation with numerical simulations. We consider the non-linearity of the system by consistently taking into account the noise dependence on the inflaton perturbations, while evolving the perturbations on the coarse-grained background affected by the noise. We capture in this way the non-Markovian nature of the dynamics, and demonstrate that non-Markovian effects are subleading. Using the Delta N formalism, we find the probability distribution P(R) of the comoving curvature perturbation R. We consider inflationary potentials that fit the CMB and lead to PBH dark matter with i) asteroid, ii) solar, or iii) Planck mass, as well as iv) PBHs that form the seeds of supermassive black holes. We find that stochastic effects enhance the PBH abundance by a factor of O(10)-O(10(8)), depending on the PBH mass. We also show that the usual approximation, where stochastic kicks depend only on the Hubble rate, either underestimates or overestimates the abundance by orders of magnitude, depending on the potential. We evaluate the gauge dependence of the results, discuss the quantum-to-classical transition, and highlight open issues of the application of the stochastic formalism to USR inflation.
Address [Figueroa, Daniel G.] CSIC, Inst Fis Corpuscular IFIC, E-46980 Valencia, Spain, Email: daniel.figueoa@ific.uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000804493000010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5239
Permanent link to this record
 

 
Author Barenboim, G.; Park, W.I.
Title New- vs. chaotic- inflations Type Journal Article
Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 02 Issue 2 Pages 061 - 20pp
Keywords (down) inflation; physics of the early universe; cosmology of theories beyond the SM
Abstract We show that “spiralized” models of new-inflation can be experimentally identified mostly by their positive spectral running in direct contrast with most chaotic-inflation models which have negative runnings typically in the range of O(10(-4)-10(-3)).
Address [Barenboim, Gabriela; Park, Wan-Il] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000372467600062 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2589
Permanent link to this record