|   | 
Details
   web
Records
Author Blanes-Selva, V.; Ruiz-Garcia, V.; Tortajada, S.; Benedi, J.M.; Valdivieso, B.; Garcia-Gomez, J.M.
Title Design of 1-year mortality forecast at hospital admission: A machine learning approach Type Journal Article
Year 2021 Publication Health Informatics Journal Abbreviated Journal Health Inform. J.
Volume 27 Issue 1 Pages 13pp
Keywords (down) machine learning; palliative care; hospital admission data; mortality forecast
Abstract Palliative care is referred to a set of programs for patients that suffer life-limiting illnesses. These programs aim to maximize the quality of life (QoL) for the last stage of life. They are currently based on clinical evaluation of the risk of 1-year mortality. The main aim of this work is to develop and validate machine-learning-based models to predict the exitus of a patient within the next year using data gathered at hospital admission. Five machine-learning techniques were applied using a retrospective dataset. The evaluation was performed with five metrics computed by a resampling strategy: Accuracy, the area under the ROC curve, Specificity, Sensitivity, and the Balanced Error Rate. All models reported an AUC ROC from 0.857 to 0.91. Specifically, Gradient Boosting Classifier was the best model, producing an AUC ROC of 0.91, a sensitivity of 0.858, a specificity of 0.808, and a BER of 0.1687. Information from standard procedures at hospital admission combined with machine learning techniques produced models with competitive discriminative power. Our models reach the best results reported in the state of the art. These results demonstrate that they can be used as an accurate data-driven palliative care criteria inclusion.
Address [Blanes-Selva, Vicent; Benedi, Jose-Miguel; Garcia-Gomez, Juan M.] Univ Politecn Valencia, Valencia, Spain, Email: viblasel@upv.es
Corporate Author Thesis
Publisher Sage Publications Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1460-4582 ISBN Medium
Area Expedition Conference
Notes WOS:000645567000008 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5182
Permanent link to this record
 

 
Author Alidra, M. et al; Torro Pastor, E.
Title The MATHUSLA test stand Type Journal Article
Year 2021 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 985 Issue Pages 164661 - 9pp
Keywords (down) Long-lived particles; LHC; MATHUSLA; Backscattered cosmic rays
Abstract The rate of muons from LHC pp collisions reaching the surface above the ATLAS interaction point is measured as a function of the ATLAS luminosity and compared with expected rates from decays of W and Z bosons and b- and c-quark jets. In addition, data collected during periods without beams circulating in the LHC provide a measurement of the background from cosmic ray inelastic backscattering that is compared to simulation predictions. Data were recorded during 2018 in a 2.5 x 2.5 x 6.5 m(3) active volume MATHUSLA test stand detector unit consisting of two scintillator planes, one at the top and one at the bottom, which defined the trigger, and six layers of RPCs between them, grouped into three (x, y)-measuring layers separated by 1.74 m from each other. Triggers selecting both upward-going tracks and downward-going tracks were used.
Address [Alidra, Maf; Ball, Austin; Guida, Roberto] CERN, Geneva, Switzerland, Email: Emma.Torro.Pastor@cern.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000592358200022 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4637
Permanent link to this record
 

 
Author Davesne, D.; Pastore, A.; Navarro, J.
Title Linear response theory with finite-range interactions Type Journal Article
Year 2021 Publication Progress in Particle and Nuclear Physics Abbreviated Journal Prog. Part. Nucl. Phys.
Volume 120 Issue Pages 103870 - 55pp
Keywords (down) Linear response theory; Finite-range interactions; Gogny and Nakada interactions; Finite size instabilities; Continued fraction approximation; Multipolar expansion
Abstract This review focuses on the calculation of infinite nuclear matter response functions using phenomenological finite-range interactions, equipped or not with tensor terms. These include Gogny and Nakada families, which are commonly used in the literature. Because of the finite-range, the main technical difficulty stems from the exchange terms of the particle-hole interaction. We first present results based on the so-called Landau and Landau-like approximations of the particle-hole interaction. Then, we review two methods which in principle provide numerically exact response functions. The first one is based on a multipolar expansion of both the particle-hole interaction and the particle-hole propagator and the second one consists in a continued fraction expansion of the response function. The numerical precision can be pushed to any degree of accuracy, but it is actually shown that two or three terms suffice to get converged results. Finally, we apply the formalism to the determination of possible finite-size instabilities induced by a finite-range interaction.
Address [Davesne, D.] Univ Lyon, F-69003 Lyon, France, Email: alessandro.pastore@york.ac.uk
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0146-6410 ISBN Medium
Area Expedition Conference
Notes WOS:000674530100008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4910
Permanent link to this record
 

 
Author Blanton, T.D.; Hanlon, A.D.; Ben Horz; Morningstar, C.; Romero-Lopez, F.; Sharpe, S.R.
Title Interactions of two and three mesons including higher partial waves from lattice QCD Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 023 - 59pp
Keywords (down) Lattice QCD; Scattering Amplitudes
Abstract We study two- and three-meson systems composed either of pions or kaons at maximal isospin using Monte Carlo simulations of lattice QCD. Utilizing the stochastic LapH method, we are able to determine hundreds of two- and three-particle energy levels, in nine different momentum frames, with high precision. We fit these levels using the relativistic finite-volume formalism based on a generic effective field theory in order to determine the parameters of the two- and three-particle K-matrices. We find that the statistical precision of our spectra is sufficient to probe not only the dominant s-wave interactions, but also those in d waves. In particular, we determine for the first time a term in the three-particle K-matrix that contains two-particle d waves. We use three N-f = 2 + 1 CLS ensembles with pion masses of 200, 280, and 340 MeV. This allows us to study the chiral dependence of the scattering observables, and compare to the expectations of chiral perturbation theory.
Address [Blanton, Tyler D.; Sharpe, Stephen R.] Univ Washington, Phys Dept, Seattle, WA 98195 USA, Email: blantonl@uw.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000704432600004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4991
Permanent link to this record
 

 
Author Romero-Lopez, F.; Rusetsky, A.; Schlage, N.; Urbach, C.
Title Relativistic N-particle energy shift in finite volume Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 060 - 52pp
Keywords (down) Lattice QCD; Lattice Quantum Field Theory
Abstract We present a general method for deriving the energy shift of an interacting system of N spinless particles in a finite volume. To this end, we use the nonrelativistic effective field theory (NREFT), and match the pertinent low-energy constants to the scattering amplitudes. Relativistic corrections are explicitly included up to a given order in the 1/L expansion. We apply this method to obtain the ground state of N particles, and the first excited state of two and three particles to order L-6 in terms of the threshold parameters of the two- and three-particle relativistic scattering amplitudes. We use these expressions to analyze the N-particle ground state energy shift in the complex phi (4) theory.
Address [Romero-Lopez, Fernando] Univ Valencia, CSIC, IFIC, Paterna 46980, Spain, Email: fernando.romero@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000617678000002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4711
Permanent link to this record