toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Girones, Z.; Marchetti, A.; Mena, O.; Pena-Garay, C.; Rius, N. url  doi
openurl 
  Title Cosmological data analysis of f(R) gravity models Type Journal Article
  Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue 11 Pages 004 - 18pp  
  Keywords (down) modified gravity; cosmological parameters from LSS  
  Abstract A class of well-behaved modified gravity models with long enough matter domination epoch and a late-time accelerated expansion is confronted with SNIa, CMB, SDSS, BAO and H(z) galaxy ages data, as well as current measurements of the linear growth of structure. We show that the combination of geometrical probes and growth data exploited here allows to rule out f(R) gravity models, in particular, the logarithmic of curvature model. We also apply solar system tests to the models in agreement with the cosmological data. We find that the exponential of the inverse of the curvature model satisfies all the observational tests considered and we derive the allowed range of parameters. Current data still allows for small deviations of Einstein gravity. Future, high precision growth data, in combination with expansion history data, will be able to distinguish tiny modifications of standard gravity from the Lambda CDM model.  
  Address [Girones, Z.; Marchetti, A.; Mena, O.; Pena-Garay, C.; Rius, N.] Univ Valencia, CSIC, IFIC, Dept Fis Teor, Valencia 46071, Spain, Email: girones@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000284825100004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 315  
Permanent link to this record
 

 
Author Racker, J.; Pena, M.; Rius, N. url  doi
openurl 
  Title Leptogenesis with small violation of B – L Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue 7 Pages 030 - 18pp  
  Keywords (down) leptogenesis; neutrino theory  
  Abstract We analyze leptogenesis in the context of seesaw models with almost conserved lepton number, focusing on the L-conserving contribution to the flavoured CP asymmetries. We find that, contrary to previous claims, successful leptogenesis is feasible for masses of the lightest heavy neutrino as low as M-1 similar to 10(6) GeV, without resorting to the resonant enhancement of the CP asymmetry for strongly degenerate heavy neutrinos. This lower limit renders thermal leptogenesis compatible with the gravitino bound in supersymmetric scenarios.  
  Address [Racker, J.; Pena, Manuel; Rius, Nuria] Univ Valencia, CSIC, Dept Fis Teor, Valencia 46071, Spain, Email: racker@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000307079600025 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1166  
Permanent link to this record
 

 
Author Folgado, M.G.; Gomez-Vargas, G.A.; Rius, N.; Ruiz de Austri, R. url  doi
openurl 
  Title Probing the sterile neutrino portal to Dark Matter with gamma rays Type Journal Article
  Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 08 Issue 8 Pages 002 - 20pp  
  Keywords (down) dark matter theory; particle physics – cosmology connection; neutrino theory  
  Abstract Sterile neutrinos could provide a link between the Standard Model particles and a dark sector, besides generating active neutrino masses via the seesaw mechanism type I. We show that, if dark matter annihilation into sterile neutrinos determines its observed relic abundance, it is possible to explain the Galactic Center gamma-ray excess reported by the Fermi-LAT Collaboration as due to an astrophysical component plus dark matter annihilations. We observe that sterile neutrino portal to dark matter provides an impressively good fit, with a p-value of 0.78 in the best fit point, to the Galactic Center gamma-ray flux, for DM masses in the range (40-80) GeV and sterile neutrino masses 20 GeV less than or similar to M-N < M-DM. Such values are compatible with the limits from Fermi-LAT observations of the dwarfs spheroidal galaxies in the Milky Way halo, which rule out dark matter masses below similar to 50 GeV ( 90 GeV), for sterile neutrino masses M-N less than or similar to MDM ( M-N << M-DM). We also estimate the impact of AMS-02 anti-proton data on this scenario.  
  Address [Folgado, Miguel G.; Rius, Nuria; Ruiz de Austri, Roberto] Univ Valencia, CSIC, Dept Fis Teor, C-Catedratico Jose Beltran 2, E-46980 Paterna, Spain, Email: migarfol@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000440591500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3681  
Permanent link to this record
 

 
Author Blennow, M.; Dasgupta, B.; Fernandez-Martinez, E.; Rius, N. url  doi
openurl 
  Title Aidnogenesis via leptogenesis and dark sphalerons Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 014 - 14pp  
  Keywords (down) Cosmology of Theories beyond the SM; Beyond Standard Model; Neutrino Physics  
  Abstract We discuss aidnogenesis,(1) i.e. the generation of a dark matter asymmetry, via new sphaleron processes associated to an extra non-abelian gauge symmetry common to both the visible and the dark sectors. Such a theory can naturally produce an abundance of asymmetric dark matter which is of the same size as the lepton and baryon asymmetries, as suggested by the similar sizes of the observed baryonic and dark matter energy content, and provide a definite prediction for the mass of the dark matter particle. We discuss in detail a minimal realization in which the Standard Model is only extended by dark matter fermions which form “dark baryons” through an SU(3) interaction, and a (broken) horizontal symmetry that induces the new sphalerons. The dark matter mass is predicted to be similar to 6GeV, close to the region favored by DAMA and CoGeNT. Furthermore, a remnant of the horizontal symmetry should be broken at a lower scale and can also explain the Tevatron dimuon anomaly.  
  Address [Blennow, Mattias; Fernandez-Martinez, Enrique] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany, Email: blennow@mppmu.mpg.de  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000289295200014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 611  
Permanent link to this record
 

 
Author Racker, J.; Rius, N. url  doi
openurl 
  Title Helicitogenesis: WIMPy baryogenesis with sterile neutrinos and other realizations Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 163 - 19pp  
  Keywords (down) Cosmology of Theories beyond the SM; Beyond Standard Model  
  Abstract We propose a mechanism for baryogenesis from particle decays or annihilations that can work at the TeV scale. Some heavy particles annihilate or decay into a heavy sterile neutrino N (with M greater than or similar to 0.5 TeV) and a “light” one nu (with m << 100 GeV), generating an asymmetry among the two helicity degrees of freedom of nu. This asymmetry is partially transferred to Standard Model leptons via fast Yukawa interactions and reprocessed into a baryon asymmetry by the electroweak sphalerons. We illustrate this mechanism in a WIMPy baryogenesis model where the helicity asymmetry is generated in the annihilation of dark matter. This model connects the baryon asymmetry, dark matter, and neutrino masses. Moreover it also complements previous studies on general requirements for baryogenesis from dark matter annihilation. Finally we discuss other possible realizations of this helicitogenesis mechanism.  
  Address [Racker, J.; Rius, N.] Univ Valencia, Dept Fis Teor, Inst Fis Corpuscular IFIC, CSIC, Valencia 46071, Spain, Email: racker@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000347909700009 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2078  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva