|   | 
Details
   web
Records
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Gozzini, S.R.; Hernandez-Rey, J.J.; Khan Chowdhury, N.R.; Lazo, A.; Palacios Gonzalez, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J.
Title Nanobeacon: A time calibration device for the KM3NeT neutrino telescope Type Journal Article
Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1040 Issue Pages 167132 - 13pp
Keywords (down) Time calibration; Instrumentation; Neutrino telescopes
Abstract The KM3NeT Collaboration is currently constructing a multi-site high-energy neutrino telescope in the Mediterranean Sea consisting of matrices of pressure-resistant glass spheres, each holding a set of 31 small-area photomultipliers. The main goals of the telescope are the observation of neutrino sources in the Universe and the measurement of the neutrino oscillation parameters with atmospheric neutrinos. A relative time synchronisation between photomultipliers of the nanosecond order needed to guarantee the required angular resolution of the detector. Due to the large detector volumes to be instrumented by KM3NeT, a cost reduction of the different systems is a priority. To this end, the inexpensive Nanobeacon has been designed and developed by the KM3NeT Collaboration to be used for detector time-calibration studies. At present, more than 600 & nbsp;Nanobeacons have been already produced. The characterisation of the optical pulse and the wavelength emission profile of the devices is critical for the time calibration. The optical pulse rise time has been quantified as less than 3 ns, while the Full Width Half Maximum is less than 6 ns. The wavelength drift, due to a variation of the supply voltage, has also been qualified as lower than 10 nm for the full range of the Nanobeacon. In this paper, more details about the main features of the Nanobeacon design, production and operation, together with the main properties of the light pulse generated are described.
Address [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: sagreus@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000841467100009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5342
Permanent link to this record
 

 
Author Vilella, E.; Alonso, O.; Trenado, J.; Vila, A.; Casanova, R.; Vos, M.; Garrido, L.; Dieguez, A.
Title A test beam setup for the characterization of the Geiger-mode avalanche photodiode technology for particle tracking Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 694 Issue Pages 199-204
Keywords (down) The Geiger-mode avalanche photodiode (GAPD); CMOS; EUDET/AIDA telescope; Schottky detector; Test beam; Trigger logic unit (TLU)
Abstract It is well known that avalanche photodiodes operated in the Geiger mode above the breakdown voltage offer a virtually infinite gain and time accuracy in the picosecond range that can be used for single photon detection. However, their performance in particle detection still remains unexplored. In this contribution, we are going to expose different steps that we have taken in order to prove the efficiency of the Geiger mode avalanche photodiodes in the aforementioned field. In particular, we will present a setup for the characterization of these sensors in a test beam. The expected results of the test beam at DESY and CERN have been simulated with Geant4 and will also be exposed.
Address [Vilella, E.; Alonso, O.; Vila, A.; Casanova, R.; Dieguez, A.] Univ Barcelona, Dept Elect, E-08028 Barcelona, Spain, Email: evilella@el.ub.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000311020500029 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1256
Permanent link to this record
 

 
Author Marinas, C.; Vos, M.
Title The Belle-II DEPFET pixel detector: A step forward in vertexing in the superKEKB flavour factory Type Journal Article
Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 650 Issue 1 Pages 59-63
Keywords (down) SuperKEKB; Belle-II; DEPFET; Pixel detector; ASIC; Mechanics; Cooling; Resolution
Abstract An upgrade of the successful asymmetric e(+)e(-) collider in KEK (Tsukuba, Japan) is foreseen by the fall of 2013. This new Super Flavor Factory will deliver an increased instantaneous luminosity of up to L = 8 x 10(35) cm(-2) s(-1), 40 times larger than the current KEKB machine. To exploit these new conditions and provide high precision measurements of the decay vertex of the B meson systems, a new silicon vertex detector will be operated in Belle. This new detector will consist of two layers of DEPFET Active Pixel Sensors as close as possible to the interaction point. DEPFET is a field effect transistor, with an additional deep implant underneath the channel's gate, integrated on a completely depleted bulk. This technology offers detection and an in-pixel amplification stage, while keeping low the power consumption. Under these conditions, thin sensors with small pixel size and low intrinsic noise are possible. In this article, an overview of the full system will be described, including the sensor, the front-end electronics and both the mechanical and thermal proposed solutions as well as the expected performance.
Address [Marinas, C; Vos, M] CSIC UVEG, IFIC, Inst Fis Corpuscular, Valencia, Spain, Email: Carlos.Marinas.Pardo@cern.ch
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000295106500015 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 768
Permanent link to this record
 

 
Author Unno, Y. et al; Garcia, C.; Jimenez, J.; Lacasta, C.; Marti-Garcia, S.; Soldevila, U.
Title Development of n(+) -in-p large-area silicon microstrip sensors for very high radiation environments-ATLAS12 design and initial results Type Journal Article
Year 2014 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 765 Issue Pages 80-90
Keywords (down) Silicon strip; n(+)-in-p; P-type; Radiation-tolerant; HL-LHC; PTP
Abstract We have been developing a novel radiation tolerant n(+)-in-p silicon microstrip sensor for very high radiation environments, aiming for application in the high luminosity large hadron collider. The sensors are fabricated in 6 in., p-type, float zone wafers, where large area strip sensor designs are laid out together with a number of miniature sensors. Radiation tolerance has been studied with ATLAS07 sensors and with independent structures. The ATLAS07 design was developed into new ATLAS12 designs. The ATLAS12A large-area sensor is made towards an axial strip sensor and the ATLAS12M towards a stereo strip sensor. New features to the ATLAS12 sensors are two dicing lines: standard edge space of 910 pm and slim edge space of 450 pm, a gated punch-through protection structure, and connection of orphan strips in a triangular corner of stereo strips. We report the design of the ATLAS12 layouts and initial measurements of the leakage current after dicing and the resistivity of the wafers.
Address [Edwards, S. O.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England, Email: yoshinobu.unno@kek.jp
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000344621000016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2002
Permanent link to this record
 

 
Author Helling, C. et al; Bernabeu, J.; Lacasta, C.; Solaz, C.
Title Strip sensor performance in prototype modules built for ATLAS ITk Type Journal Article
Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 978 Issue Pages 164402 - 6pp
Keywords (down) Silicon strip sensors; Strip module; Inter-strip isolation; Readout noise
Abstract ATLAS experiment is preparing an upgrade of its detector for High-Luminosity LHC (HL-LHC) operation. The upgrade involves installation of the new all-silicon Inner Tracker (ITk). In the context of the ITk preparations, more than 80 strip modules were built with prototype barrel sensors. They were tested with electrical readout on a per-channel basis. In general, an excellent performance was observed, consistent with previous ASIC-level and sensor-level tests. However, the lessons learned included two phenomena important for the future phases of the project. First was the need to store and test the modules in a dry environment due to humidity sensitivity of the sensors. The second was an observation of high noise regions for 2 modules. The high noise regions were tested further in several ways, including monitoring the performance as a function of time and bias voltage. Additionally, direct sensor-level tests were performed on the affected channels. The inter-strip resistance and bias resistance tests showed low values, indicating a temporary loss of the inter-strip isolation. A subsequent recovery of the noise performance was observed. We present the test details, an analysis of how the inter-strip isolation affects the module noise, and the relationship with sensor-level quality control tests.
Address [Helling, C.; Affolder, A. A.; Fadeyev, V.; Galloway, Z.; Gignac, M.; Gunnell, J.; Martinez-Mckinney, F.; Kang, N.; Yarwick, J.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA, Email: fadeyev@ucsc.edu
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000560076700015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4505
Permanent link to this record