|   | 
Details
   web
Records
Author Alvarez-Ruso, L.; Saul-Sala, E.
Title Neutrino interactions with matter and the MiniBooNE anomaly Type Journal Article
Year 2021 Publication European Physical Journal-Special Topics Abbreviated Journal Eur. Phys. J.-Spec. Top.
Volume 230 Issue Pages 4373-4389
Keywords (up)
Abstract The excess of electron-like events measured by MiniBooNE challenges our understanding of neutrinos and their interactions. We review the status of this open problem and ongoing efforts to resolve it. After introducing the experiment and its results, we consider the main experimental backgrounds and the related physics of neutrino interactions with matter, such as quasielastic-like scattering and weak pion production on nucleons and nuclei. Special attention is paid to single photon emission in neutral current interactions and, in particular, its coherent channel. The difficulties to reconcile the MiniBooNE anomaly with global oscillation analysis is then highlighted. We finally outline some of the proposed solutions of the puzzle involving unconventional neutrino-interaction mechanisms.
Address [Alvarez-Ruso, Luis] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: Luis.Alvarez@ific.uv.es
Corporate Author Thesis
Publisher Springer Heidelberg Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1951-6355 ISBN Medium
Area Expedition Conference
Notes WOS:000709649400001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5007
Permanent link to this record
 

 
Author GENIE Collaboration (Alvarez-Ruso, L. et al)
Title Recent highlights from GENIE v3 Type Journal Article
Year 2021 Publication European Physical Journal-Special Topics Abbreviated Journal Eur. Phys. J.-Spec. Top.
Volume 230 Issue Pages 4449-4467
Keywords (up)
Abstract The release of GENIE v3.0.0 was a major milestone in the long history of the GENIE project, delivering several alternative comprehensive neutrino interaction models, improved charged-lepton scattering simulations, a range of beyond the Standard Model simulation capabilities, improved experimental interfaces, expanded core framework capabilities, and advanced new frameworks for the global analysis of neutrino scattering data and tuning of neutrino interaction models. Steady progress continued following the release of GENIE v3.0.0. New tools and a large number of new physics models, comprehensive model configurations, and tunes have been made publicly available and planned for release in v3.2.0. This article highlights some of the most recent technical and physics developments in the GENIE v3 series.
Address [Vololoniaina, Narisoa] Univ Antananarivo, Dept Phys, Antananarivo 101, Madagascar, Email: publications@genie-mc.org
Corporate Author Thesis
Publisher Springer Heidelberg Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1951-6355 ISBN Medium
Area Expedition Conference
Notes WOS:000728775800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5046
Permanent link to this record
 

 
Author D'Auria, G. et al; Gonzalez-Iglesias, D.; Gimeno, B.; Pereira, D.E.
Title The CompactLight Design Study Type Journal Article
Year 2024 Publication European Physical Journal-Special Topics Abbreviated Journal Eur. Phys. J.-Spec. Top.
Volume Issue Pages 1-208
Keywords (up)
Abstract CompactLight is a Design Study funded by the European Union under the Horizon 2020 research and innovation funding programme, with Grant Agreement No. 777431. CompactLight was conducted by an International Collaboration of 23 international laboratories and academic institutions, three private companies, and five third parties. The project, which started in January 2018 with a duration of 48 months, aimed to design an innovative, compact, and cost-effective hard X-ray FEL facility complemented by a soft X-ray source to pave the road for future compact accelerator-based facilities. The result is an accelerator that can be operated at up to 1 kHz pulse repetition rate, beyond today's state of the art, using the latest concepts for high brightness electron photoinjectors, very high gradient accelerating structures in X-band, and novel short-period undulators. In this report, we summarize the main deliverable of the project: the CompactLight Conceptual Design Report, which overviews the current status of the design and addresses the main technological challenges.
Address [D'Auria, G.; Danailov, M.; Mitri, S. Di; Ferianis, M.; Gioppo, R.; Rochow, R.; Tabacco, C.; Zangrando, M.] Elettra Sincrotrone Trieste SCpA, AREA Sci Pk, I-34149 Trieste, Italy, Email: gerardo.dauria@elettra.eu
Corporate Author Thesis
Publisher Springer Heidelberg Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1951-6355 ISBN Medium
Area Expedition Conference
Notes WOS:001198683900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6122
Permanent link to this record