|   | 
Details
   web
Records
Author Aebischer, J.; Brivio, I.; Celis, A.; Evans, J.A.; Jiang, Y.; Kumar, J.; Pan, X.Y.; Porod, W.; Rosiek, J.; Shih, D.; Staub, F.; Straub, D.M.; van Dyk, D.; Vicente, A.
Title WCxf : An exchange format for Wilson coefficients beyond the Standard Model Type Journal Article
Year 2018 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.
Volume 232 Issue Pages 71-83
Keywords (down) High energy physics and computing; Models beyond the standard model
Abstract We define a data exchange format for numerical values of Wilson coefficients of local operators parameterising low-energy effects of physics beyond the Standard Model. The format facilitates interfacing model-specific Wilson coefficient calculators, renormalisation group (RG) runners, and observable calculators. It is designed to be unambiguous (defining a non-redundant set of operators with fixed normalisation in each basis), extensible (allowing the addition of new EFTs or bases by the user), and robust (being based on industry standard file formats with parsers implemented in many programming languages). We have implemented the format for the Standard Model EFT (SMEFT) and for the weak effective theory (WET) below the electroweak scale and have added interfaces to a number of public codes dealing with SMEFT or WET. We also provide command-line utilities and a Python module for convenient manipulation of WCxf files, including translation between different bases and matching from SMEFT to WET. (C) 2018 Elsevier B.V. All rights reserved.
Address [Aebischer, Jason; Pan, Xuanyou; Straub, David M.] TUM, Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany, Email: david.straub@tum.de
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4655 ISBN Medium
Area Expedition Conference
Notes WOS:000442190200006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3695
Permanent link to this record
 

 
Author Hirsch, M.; Joaquim, F.R.; Vicente, A.
Title Constrained SUSY seesaws with a 125 GeV Higgs Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages 105 - 33pp
Keywords (down) Higgs Physics; Rare Decays; Neutrino Physics; Supersymmetric Standard Model
Abstract Motivated by the ATLAS and CMS discovery of a Higgs-like boson with a mass around 125 GeV, and by the need of explaining neutrino masses, we analyse the three canonical SUSY versions of the seesaw mechanism (type I, II and III) with CMSSM boundary conditions. In type II and III cases, SUSY particles are lighter than in the CMSSM (or the constrained type I seesaw), for the same set of input parameters at the universality scale. Thus, to explain m(h0) similar or equal to 125 GeV at low energies, one is forced into regions of parameter space with very large values of m(0), M-1/2 or A(0). We compare the squark and gluino masses allowed by the ATLAS and CMS ranges for m(h0) (extracted from the 2011-2012 data), and discuss the possibility of distinguishing seesaw models in view of future results on SUSY searches. In particular, we briefly comment on the discovery potential of LHC upgrades, for squark/gluino mass ranges required by present Higgs mass constraints. A discrimination between different seesaw models cannot rely on the Higgs mass data alone, therefore we also take into account the MEG upper limit on BR(mu -> e gamma) and show that, in some cases, this may help to restrict the SUSY parameter space, as well as to set complementary limits on the seesaw scale.
Address [Hirsch, M.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46071 Valencia, Spain, Email: mahirsch@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000312198500040 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1301
Permanent link to this record
 

 
Author Vicente, A.
Title Higgs Lepton Flavor Violating Decays in Two Higgs Doublet Models Type Journal Article
Year 2019 Publication Frontiers in Physics Abbreviated Journal Front. Physics
Volume 7 Issue Pages 174 - 13pp
Keywords (down) Higgs boson; lepton flavor violating decays; beyond the standard model; two Higgs doublet models; effective field theory
Abstract The discovery of a non-zero rate for a lepton flavor violating decay mode of the Higgs boson would definitely be an indication of New Physics. We review the prospects for such signal in Two Higgs Doublet Models, in particular for Higgs boson decays into tau μfinal states. We will show that this scenario contains all the necessary ingredients to provide large flavor violating rates and still be compatible with the stringent limits from direct searches and low-energy flavor experiments.
Address [Vicente, Avelino] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: avelino.vicente@ific.uv.es
Corporate Author Thesis
Publisher Frontiers Media Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424x ISBN Medium
Area Expedition Conference
Notes WOS:000498568200001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4206
Permanent link to this record
 

 
Author Aoki, M.; Toma, T.; Vicente, A.
Title Non-thermal production of minimal dark matter via right-handed neutrino decay Type Journal Article
Year 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 09 Issue 9 Pages 063 - 19pp
Keywords (down) dark matter theory; gamma ray theory; particle physics – cosmology connection; physics of the early universe
Abstract Minimal Dark Matter (MDM) stands as one of the simplest dark matter scenarios. In MDM models, annihilation and co-annihilation processes among the members of the MDM multiplet are usually very efficient, pushing the dark matter mass above O(10) TeV in order to reproduce the observed dark matter relic density. Motivated by this little drawback, in this paper we consider an extension of the MDM scenario by three right-handed neutrinos. Two specific choices for the MDM multiplet are studied: a fermionic SU(2)(L) quintuplet and a scalar SU(2)(L) septuplet. The lightest right-handed neutrino, with tiny Yukawa couplings, never reaches thermal equilibrium in the early universe and is produced by freeze-in. This creates a link between dark matter and neutrino physics: dark matter can be non-thermally produced by the decay of the lightest right-handed neutrino after freeze-out, allowing to lower significantly the dark matter mass. We discuss the phenomenology of the non-thermally produced MDM and, taking into account significant Sommerfeld corrections, we find that the dark matter mass must have some specific values in order not to be in conflict with the current bounds from gamma-ray observations.
Address [Aoki, Mayumi] Kanazawa Univ, Inst Theoret Phys, Kanazawa, Ishikawa 9201192, Japan, Email: mayumi@hep.s.kanazawa-u.ac.jp;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000365690000063 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2479
Permanent link to this record
 

 
Author Merle, A.; Platscher, M.; Rojas, N.; Valle, J.W.F.; Vicente, A.
Title Consistency of WIMP Dark Matter as radiative neutrino mass messenger Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 013 - 17pp
Keywords (down) Beyond Standard Model; Renormalization Group; Neutrino Physics; Discrete Symmetries
Abstract The scotogenic scenario provides an attractive approach to both Dark Matter and neutrino mass generation, in which the same symmetry that stabilises Dark Matter also ensures the radiative seesaw origin of neutrino mass. However the simplest scenario may suffer from inconsistencies arising from the spontaneous breaking of the underlying Z(2) symmetry. Here we show that the singlet-triplet extension of the simplest model naturally avoids this problem due to the presence of scalar triplets neutral under the Z(2) which affect the evolution of the couplings in the scalar sector. The scenario offers good prospects for direct WIMP Dark Matter detection through the nuclear recoil method.
Address [Merle, Alexander] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, Fohringer Ring 6, D-80805 Munich, Germany, Email: amerle@mpp.mpg.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000379170300005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2748
Permanent link to this record