|   | 
Details
   web
Records
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title New constraints on all flavor Galactic diffuse neutrino emission with the ANTARES telescope Type Journal Article
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 96 Issue 6 Pages 062001 - 8pp
Keywords (up)
Abstract The flux of very high-energy neutrinos produced in our Galaxy by the interaction of accelerated cosmic rays with the interstellar medium is not yet determined. The characterization of this flux will shed light on Galactic accelerator features, gas distribution morphology and Galactic cosmic ray transport. The central Galactic plane can be the site of an enhanced neutrino production, thus leading to anisotropies in the extraterrestrial neutrino signal as measured by the IceCube Collaboration. The ANTARES neutrino telescope, located in the Mediterranean Sea, offers a favorable view of this part of the sky, thereby allowing for a contribution to the determination of this flux. The expected diffuse Galactic neutrino emission can be obtained, linking a model of generation and propagation of cosmic rays with the morphology of the gas distribution in the Milky Way. In this paper, the so-called “gamma model” introduced recently to explain the high-energy gamma-ray diffuse Galactic emission is assumed as reference. The neutrino flux predicted by the “gamma model” depends on the assumed primary cosmic ray spectrum cutoff. Considering a radially dependent diffusion coefficient, this proposed scenario is able to account for the local cosmic ray measurements, as well as for the Galactic gamma-ray observations. Nine years of ANTARES data are used in this work to search for a possible Galactic contribution according to this scenario. All flavor neutrino interactions are considered. No excess of events is observed, and an upper limit is set on the neutrino flux of 1.1 (1.2) times the prediction of the “gamma model,” assuming the primary cosmic ray spectrum cutoff at 5 (50) PeV. This limit excludes the diffuse Galactic neutrino emission as the major cause of the “spectral anomaly” between the two hemispheres measured by IceCube.
Address [Albert, A.; Drouhin, D.; Racca, C.] Univ Haute Alsace, GRPHE, Inst Univ Technol Colmar, 34 Rue Grillenbreit BP 50568, F-68008 Colmar, France, Email: tgregoir@apc.in2p3.fr;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000410184200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3289
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title First all-flavor neutrino pointlike source search with the ANTARES neutrino telescope Type Journal Article
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 96 Issue 8 Pages 082001 - 15pp
Keywords (up)
Abstract A search for cosmic neutrino sources using the data collected with the ANTARES neutrino telescope between early 2007 and the end of 2015 is performed. For the first time, all neutrino interactions-charged and neutral-current interactions of all flavors-are considered in a search for point-like sources with the ANTARES detector. In previous analyses, only muon neutrino charged-current interactions were used. This is achieved by using a novel reconstruction algorithm for shower-like events in addition to the standard muon track reconstruction. The shower channel contributes about 23% of all signal events for an E-2 energy spectrum. No significant excess over background is found. The most signal-like cluster of events is located at (alpha, delta) = (343.8 degrees, 23.5 degrees) with a significance of 1.9 sigma. The neutrino flux sensitivity of the search is about E(2)d Phi/dE = 6 x 10(-9) GeV cm(-2) s(-1) for declinations from -90 degrees up to -42 degrees, and below 10(-8) GeV cm(-2) s(-1) for declinations up to 5 degrees. The directions of 106 source candidates and 13 muon track events from the IceCube high-energy sample events are investigated for a possible neutrino signal and upper limits on the signal flux are determined.
Address [Albert, A.; Drouhin, D.; Racca, C.] Univ Haute Alsace, Inst Univ Technol Colmar, GRPHE, 34 Rue Grillenbreit BP 50568, F-68008 Colmar, France, Email: javier.barrios@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000412051500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3322
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title All-sky search for high-energy neutrinos from gravitational wave event GW170104 with the ANTARES neutrino telescope Type Journal Article
Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 77 Issue 12 Pages 911 - 7pp
Keywords (up)
Abstract Advanced LIGO detected a significant gravitational wave signal (GW170104) originating from the coalescence of two black holes during the second observation run on January 4th, 2017. Anall-sky high-energy neutrino follow-up search has been made using data from the Antares neutrino telescope, including both upgoing and downgoing events in two separate analyses. No neutrino candidates were found within +/- 500 s around the GW event time nor any time clustering of events over an extended time window of +/- 3 months. The non-detection is used to constrain isotropic-equivalent high-energy neutrino emission from GW170104 to less than similar to 1.2 x 10(55) erg for a E-2 spectrum. This constraint is valid in the energy range corresponding to the 5-95% quantiles of the neutrino flux [3.2 TeV; 3.6 PeV], if the GW emitter was below the Antares horizon at the alert time.
Address [Albert, A.; Drouhin, D.; Racca, C.] Univ Haute Alsace, Inst Univ Technol Colmar, GRPHE, 34 Rue Grillenbreit,BP 50568, F-68008 Colmar, France, Email: coleiro@apc.in2p3.fr
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000419035700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3441
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title Search for high-energy neutrinos from bright GRBs with ANTARES Type Journal Article
Year 2017 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 469 Issue 1 Pages 906-915
Keywords (up) acceleration of particles; neutrinos; gamma-ray burst: individual: GRB 080916C; gamma-ray burst: individual: GRB 110918A; gamma-ray burst: individual: GRB 130427A; gamma-ray burst: individual: GRB 130505A
Abstract Gamma-ray bursts are thought to be sites of hadronic acceleration, thus neutrinos are expected from the decay of charged particles, produced in p gamma interactions. The methods and results of a search for muon neutrinos in the data of the ANTARES neutrino telescope from four bright GRBs (GRB 080916C, GRB 110918A, GRB 130427A and GRB 130505A) observed between 2008 and 2013 are presented. Two scenarios of the fireball model have been investigated: the internal shock scenario, leading to the production of neutrinos with energies mainly above 100 TeV, and the photospheric scenario, characterized by a low-energy component in neutrino spectra due to the assumption of neutrino production closer to the central engine. Since no neutrino events have been detected in temporal and spatial coincidence with these bursts, upper limits at 90 per cent confidence level on the expected neutrino fluxes are derived. The non-detection allows for directly constraining the bulk Lorentz factor of the jet Gamma and the baryon loading f(p).
Address [Albert, A.; Drouhin, D.; Racca, C.] Univ Haute Alsace, GRPHE, Inst Univ Technol Colmar, 34 Rue Grillenbreit BP 50568, F-68008 Colmar, France, Email: silvia.celli@gssi.infn.it
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000402825000062 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3159
Permanent link to this record
 

 
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Barrios-Marti, J.; Hernandez-Rey, J.J.; Sanchez-Losa, A.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title The first combined search for neutrino point-sources in the Southern Hemisphere with the ANTARES and IceCube neutrino telescopes Type Journal Article
Year 2016 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 823 Issue 1 Pages 65 - 12pp
Keywords (up) astroparticle physics; neutrinos
Abstract We present the results of searches for point-like sources of neutrinos based on the first combined analysis of data from both the ANTARES and IceCube neutrino telescopes. The combination of both detectors, which differ in size and location, forms a window in the southern sky where the sensitivity to point sources improves by up to a factor of 2 compared with individual analyses. Using data recorded by ANTARES from 2007 to 2012, and by IceCube from 2008 to 2011, we search for sources of neutrino emission both across the southern sky and from a preselected list of candidate objects. No significant excess over background has been found in these searches, and flux upper limits for the candidate sources are presented for E-2.5 and E-2 power-law spectra with different energy cut-offs.
Address [Adrian-Martinez, S.; Ardid, M.; Felis, I.; Martinez-Mora, J. A.; Saldana, M.] Univ Politecn Valencia, Inst Invest Gestio Integrada Zones Costaneres IGI, C Paranimf 1, E-46730 Gandia, Spain
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000377216300065 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2709
Permanent link to this record