|   | 
Details
   web
Records
Author Caputo, A.
Title Radiative axion inflation Type Journal Article
Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 797 Issue Pages 134824 - 7pp
Keywords (up)
Abstract Planck data robustly exclude the simple lambda phi(4) scenario for inflation. This is also the case for models of “Axion Inflation” in which the inflaton field is the radial part of the Peccei-Quinn complex scalar field. In this letter we show that for the KSVZ model it is possible to match the data taking into account radiative corrections to the tree level potential. After writing down the 1-loop Coleman-Weinberg potential, we show that a radiative plateau is easily generated thanks to the fact that the heavy quarks are charged under SU(3)(c) in order to solve the strong CP problem. We also give a numerical example for which the inflationary observables are computed and the heavy quarks are predicted to have a mass m(Q) greater than or similar to 10(2) TeV.
Address [Caputo, Andrea] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: andrea.caputo@uv.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000488071200004 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4159
Permanent link to this record
 

 
Author Caputo, A.; Esposito, A.; Polosa, A.D.
Title Sub-MeV dark matter and the Goldstone modes of superfluid helium Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 11 Pages 116007 - 6pp
Keywords (up)
Abstract We show how a relativistic effective field theory for the superfluid phase of 4 He can replace the standard methods used to compute the production rates of low-momentum excitations due to the interaction with an external probe. This is done by studying the scattering problem of a light dark matter particle in the superfluid and comparing to some existing results. We show that the rate of emission of two phonons, the Goldstone modes of the effective theory, gets strongly suppressed for sub-MeV dark matter particles due to a fine cancellation between two different tree-level diagrams in the limit of small exchanged momenta. This phenomenon is found to be a consequence of the particular choice of the potential felt by the dark matter particle in helium. The predicted rates can vary by orders of magnitude if this potential is changed. We prove that the dominant contribution to the total emission rate is provided by excitations in the phonon branch. Finally, we analyze the angular distributions for the emissions of one and two phonons and discuss how they can be used to measure the mass of the hypothetical dark matter particle hitting the helium target.
Address [Caputo, Andrea] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Paterna 46980, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000501488800008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4222
Permanent link to this record
 

 
Author Blas, D.; Caputo, A.; Ivanov, M.M.; Sberna, L.
Title No chiral light bending by clumps of axion-like particles Type Journal Article
Year 2020 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume 27 Issue Pages 100428 - 4pp
Keywords (up)
Abstract We study the propagation of light in the presence of a parity-violating coupling between photons and axion-like particles (ALPs). Naively, this interaction could lead to a split of light rays into two separate beams of different polarization chirality and with different refraction angles. However, by using the eikonal method we explicitly show that this is not the case and that ALP clumps do not produce any spatial birefringence. This happens due to non-trivial variations of the photon's frequency and wavevector, which absorb time-derivatives and gradients of the ALP field. We argue that these variations represent a new way to probe the ALP-photon coupling with precision frequency measurements.
Address [Blas, Diego] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England, Email: mi1271@nyu.edu
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-6864 ISBN Medium
Area Expedition Conference
Notes WOS:000515668000021 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4315
Permanent link to this record
 

 
Author Caputo, A.; Millar, A.J.; Vitagliano, E.
Title Revisiting longitudinal plasmon-axion conversion in external magnetic fields Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 12 Pages 123004 - 13pp
Keywords (up)
Abstract In the presence of an external magnetic field, the axion and the photon mix. In particular, the dispersion relation of a longitudinal plasmon always crosses the dispersion relation of the axion (for small axion masses), thus leading to a resonant conversion. Using thermal field theory, we concisely derive the axion emission rate, applying it to astrophysical and laboratory scenarios. For the Sun, depending on the magnetic field profile, plasmon-axion conversion can dominate over Primakoff production at low energies (less than or similar to 200 eV). This both provides a new axion source for future helioscopes and, in the event of discovery, would probe the magnetic field structure of the Sun. In the case of white dwarfs (WDs), plasmon-axion conversion provides a pure photon coupling probe of the axion, which may contribute significantly for low-mass WDs. Finally, we rederive and confirm the axion absorption rate of the recently proposed plasma haloscopes.
Address [Caputo, Andrea] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: andrea.caputo@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000537316000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4417
Permanent link to this record
 

 
Author O'Hare, C.A.J.; Caputo, A.; Millar, A.J.; Vitagliano, E.
Title Axion helioscopes as solar magnetometers Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 4 Pages 043019 - 19pp
Keywords (up)
Abstract Axion helioscopes search for solar axions and axionlike particles via inverse Primakoff conversion in strong laboratory magnets pointed at the Sun. Anticipating the detection of solar axions, we determine the potential for the planned next-generation helioscope, the International Axion Observatory (IAXO), to measure or constrain the solar magnetic field. To do this we consider a previously neglected component of the solar axion flux at sub-keV energies arising from the conversion of longitudinal plasmons. This flux is sensitively dependent to the magnetic field profile of the Sun, with lower energies corresponding to axions converting into photons at larger solar radii. If the detector technology eventually installed in IAXO has an energy resolution better than 200 eV, then solar axions could become an even more powerful messenger than neutrinos of the magnetic field in the core of the Sun. For energy resolutions better than 10 eV, IAXO could access the inner 70% of the Sun and begin to constrain the field at the tachocline: the boundary between the radiative and convective zones. The longitudinal plasmon flux from a toroidal magnetic field also has an additional 2% geometric modulation effect which could be used to measure the angular dependence of the magnetic field.
Address [O'Hare, Ciaran A. J.] Univ Sydney, Sch Phys, Phys Rd, Sydney, NSW 2006, Australia, Email: ciaran.ohare@sydney.edu.au;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000562631300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4513
Permanent link to this record