toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Donini, A.; Hernandez, P.; Pena, C.; Romero-Lopez, F. url  doi
openurl 
  Title Dissecting the Delta I=1/2 rule at large N-c Type Journal Article
  Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 80 Issue 7 Pages 638 - 12pp  
  Keywords (up)  
  Abstract We study the scaling of kaon decay amplitudes with the number of colours, N-c, in a theory with four degenerate flavours, N-f = 4. In this scenario, two current-current operators, Q(+/-), mediate Delta S = 1 transitions, such as the two isospin amplitudes of non-leptonic kaon decays for K -> (pi pi)(I=0,2), A(0) and A(2.) In particular, we concentrate on the simpler K -> pi amplitudes, A(+/-), mediated by these two operators. A diagrammatic analysis of the large-N-c scaling of these observables is presented, which demonstrates the anticorrelation of the leading O(1/N-c) and O(N-f/N-c(2)) corrections in both amplitudes. Using our new N-f = 4 and previous quenched data, we confirm this expectation and show that these corrections are naturally large and may be at the origin of the Delta I = 1/2 rule. The evidence for the latter is indirect, based on the matching of the amplitudes to their prediction in Chiral Perturbation Theory, from which the LO low-energy couplings of the chiral weak Hamiltonian, g(+/-), can be determined. A NLO estimate of the K -> (pi pi)(I=0,2) isospin amplitudes can then be derived, which is in good agreement with the experimental value.  
  Address [Donini, Andrea; Hernandez, Pilar; Romero-Lopez, Fernando] IFIC CSIC UVEG, Edificio Inst Invest,Apt 22085, Valencia 46071, Spain, Email: fernando.romero@uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000552393200003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4480  
Permanent link to this record
 

 
Author Plompen, A.J.M. et al; Algora, A. doi  openurl
  Title The joint evaluated fission and fusion nuclear data library, JEFF-3.3 Type Journal Article
  Year 2020 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 56 Issue 7 Pages 181 - 108pp  
  Keywords (up)  
  Abstract The joint evaluated fission and fusion nuclear data library 3.3 is described. New evaluations for neutron-induced interactions with the major actinides 235U, 238U and 239Pu, on 241Am and 23Na, 59Ni, Cr, Cu, Zr, Cd, Hf, W, Au, Pb and Bi are presented. It includes new fission yields, prompt fission neutron spectra and average number of neutrons per fission. In addition, new data for radioactive decay, thermal neutron scattering, gamma-ray emission, neutron activation, delayed neutrons and displacement damage are presented. JEFF-3.3 was complemented by files from the TENDL project. The libraries for photon, proton, deuteron, triton, helion and alpha-particle induced reactions are from TENDL-2017. The demands for uncertainty quantification in modeling led to many new covariance data for the evaluations. A comparison between results from model calculations using the JEFF-3.3 library and those from benchmark experiments for criticality, delayed neutron yields, shielding and decay heat, reveals that JEFF-3.3 performes very well for a wide range of nuclear technology applications, in particular nuclear energy.  
  Address [Plompen, A. J. M.; Hambsch, F-J; Kopecky, S.; Schillebeeckx, P.; Zerovnik, G.] Joint Res Ctr, European Commiss, B-2440 Geel, Belgium, Email: arjan.plompen@ec.europa.eu  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000553469600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4483  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanchez Mayordomo, C. url  doi
openurl 
  Title Measurement of the branching fraction of the decay B-s(0) -> (KSKS0)-K-0 Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 1 Pages 012011 - 15pp  
  Keywords (up)  
  Abstract A measurement of the branching fraction of the decay B-s(0) -> (KSKS0)-K-0 is performed using proton- proton – collision data corresponding to an integrated luminosity of 5 fb(-1) collected by the LHCb experiment between 2011 and 2016. The branching fraction is determined to be B(B-s(0) -> (KSKS0)-K-0) = [8.3 +/- 1.6(stat) +/- 0.9(syst) +/- 0.8(norm) +/- 0.3(f(s)/f(d))] x 10(-6), where the first uncertainty is statistical, the second is systematic, and the third and fourth are due to uncertainties on the branching fraction of the normalization mode B-0 -> phi K(S)(0 )and the ratio of hadronization fractions f(s)/f(d). This is the most precise measurement of this branching fraction to date. Furthermore, a measurement of the branching fraction of the decay B-s(0) -> (KSKS0)-K-0 is performed relative to that of the B-s(0) -> (KSKS0)-K-0 channel, and is found to be B(B-s(0) -> (KSKS0)-K-0)/B(B-s(0) -> (KSKS0)-K-0) = [7.5 +/- 3.1(stat) 0.5(syst) +/- 0.3(f(s)/f(d))1 x 10(-2).  
  Address [Bediaga, I.; Cruz Torres, M.; De Miranda, J. M.; Gomes, A.; Massafferri, A.; dos Reis, A. C.; Soares Lavra, L.; Tourinho Jadallah Aoude, R.] CBPF, Rio De Janeiro, Brazil, Email: maria.vieites.diaz@cern.ch  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000554411300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4484  
Permanent link to this record
 

 
Author Das, A.; Mandal, S.; Modak, T. url  doi
openurl 
  Title Testing triplet fermions at the electron-positron and electron-proton colliders using fat jet signatures Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 3 Pages 033001 - 22pp  
  Keywords (up)  
  Abstract The addition of SU(2)(L) triplet fermions of zero hypercharge with the Standard Model (SM) helps to explain the origin of the neutrino mass by the so-called seesaw mechanism. Such a scenario is commonly known as the type-III seesaw model. After the electroweak symmetry breaking, the mixings between the light and heavy mass eigenstates of the neutral leptons are developed and play important roles in the study of the charged and neutral multiplets of the triplet fermions at the colliders. In this article, we study such interactions to produce these multiplets of the triplet fermion at the electron-positron and electron-proton colliders at different center-of-mass energies. We focus on the heavy triplets, for example, having mass in the TeV scale so that their decay products including the SM, the gauge bosons, or the Higgs boson can be sufficiently boosted, leading to a fat jet. Hence, we probe the mixing between light-heavy mass eigenstates of the neutrinos and compare the results with the bounds obtained by the electroweak precision study.  
  Address [Das, Arindam] Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan, Email: arindam.das@het.phys.sci.osaka-u.ac.jp;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000555774600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4486  
Permanent link to this record
 

 
Author Sobczyk, J.E.; Nieves, J.; Sanchez, F. url  doi
openurl 
  Title Exclusive-final-state hadron observables from neutrino-nucleus multinucleon knockout Type Journal Article
  Year 2020 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 102 Issue 2 Pages 024601 - 16pp  
  Keywords (up)  
  Abstract We present results of an updated calculation of the two particle two hole (2p2h) contribution to the neutrino-induced charge-current cross section. We provide also some exclusive observables, interesting from the point of view of experimental studies, e.g., distributions of momenta of the outgoing nucleons and of available energy, which we compare with the results obtained within the NEUT generator. We also compute, and separate from the total, the contributions of 3p3h mechanisms. Finally, we discuss the differences between the present results and previous implementations of the model in MC event generators, done at the level of inclusive cross sections, which might significantly influence the experimental analyses, particularly in the cases where the hadronic observables are considered.  
  Address [Sobczyk, J. E.; Nieves, J.] Univ Valencia, Inst Fis Corpuscular IFIC, Inst Invest Paterna, Ctr Mixto CSIC, Apartado 22085, E-46071 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000555591600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4487  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva